420 research outputs found
Satisfiability of CTL* with constraints
We show that satisfiability for CTL* with equality-, order-, and
modulo-constraints over Z is decidable. Previously, decidability was only known
for certain fragments of CTL*, e.g., the existential and positive fragments and
EF.Comment: To appear at Concur 201
Compact Labelings For Efficient First-Order Model-Checking
We consider graph properties that can be checked from labels, i.e., bit
sequences, of logarithmic length attached to vertices. We prove that there
exists such a labeling for checking a first-order formula with free set
variables in the graphs of every class that is \emph{nicely locally
cwd-decomposable}. This notion generalizes that of a \emph{nicely locally
tree-decomposable} class. The graphs of such classes can be covered by graphs
of bounded \emph{clique-width} with limited overlaps. We also consider such
labelings for \emph{bounded} first-order formulas on graph classes of
\emph{bounded expansion}. Some of these results are extended to counting
queries
On vertex coloring without monochromatic triangles
We study a certain relaxation of the classic vertex coloring problem, namely,
a coloring of vertices of undirected, simple graphs, such that there are no
monochromatic triangles. We give the first classification of the problem in
terms of classic and parametrized algorithms. Several computational complexity
results are also presented, which improve on the previous results found in the
literature. We propose the new structural parameter for undirected, simple
graphs -- the triangle-free chromatic number . We bound by
other known structural parameters. We also present two classes of graphs with
interesting coloring properties, that play pivotal role in proving useful
observation about our problem. We give/ask several conjectures/questions
throughout this paper to encourage new research in the area of graph coloring.Comment: Extended abstrac
Verifying Monadic Second-Order Properties of Graph Programs
The core challenge in a Hoare- or Dijkstra-style proof system for graph
programs is in defining a weakest liberal precondition construction with
respect to a rule and a postcondition. Previous work addressing this has
focused on assertion languages for first-order properties, which are unable to
express important global properties of graphs such as acyclicity,
connectedness, or existence of paths. In this paper, we extend the nested graph
conditions of Habel, Pennemann, and Rensink to make them equivalently
expressive to monadic second-order logic on graphs. We present a weakest
liberal precondition construction for these assertions, and demonstrate its use
in verifying non-local correctness specifications of graph programs in the
sense of Habel et al.Comment: Extended version of a paper to appear at ICGT 201
PULSED AND CW LASER TREATMENTS OF IMPLANTED POLYSILICON SOLAR CELLS
Conventional ion implantation and unanalyzed ion bombardment have been used to elaborate the rectifying N+ contact of polycrystalline silicon (Wacker, HEM, CGE) solar cells. Two surface laser annealing in the liquid phase (Nd : YAG laser) and in the solid phase (CO2 laser) regimes have been used. The properties of the solar cells so processed have been investigated. For both doping procedures and both annealing techniques, the cells (conversion) efficiencies under AM1 illumination exceeded 11% for the various polysilicon substrates
Typing Copyless Message Passing
We present a calculus that models a form of process interaction based on
copyless message passing, in the style of Singularity OS. The calculus is
equipped with a type system ensuring that well-typed processes are free from
memory faults, memory leaks, and communication errors. The type system is
essentially linear, but we show that linearity alone is inadequate, because it
leaves room for scenarios where well-typed processes leak significant amounts
of memory. We address these problems basing the type system upon an original
variant of session types.Comment: 50 page
Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity
We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the
state-complexity of representing sub- or superword closures of context-free
grammars (CFGs): (1) We prove a (tight) upper bound of on
the size of nondeterministic finite automata (NFAs) representing the subword
closure of a CFG of size . (2) We present a family of CFGs for which the
minimal deterministic finite automata representing their subword closure
matches the upper-bound of following from (1).
Furthermore, we prove that the inequivalence problem for NFAs representing sub-
or superword-closed languages is only NP-complete as opposed to PSPACE-complete
for general NFAs. Finally, we extend our results into an approximation method
to attack inequivalence problems for CFGs
Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth
We consider the multivariate interlace polynomial introduced by Courcelle
(2008), which generalizes several interlace polynomials defined by Arratia,
Bollobas, and Sorkin (2004) and by Aigner and van der Holst (2004). We present
an algorithm to evaluate the multivariate interlace polynomial of a graph with
n vertices given a tree decomposition of the graph of width k. The best
previously known result (Courcelle 2008) employs a general logical framework
and leads to an algorithm with running time f(k)*n, where f(k) is doubly
exponential in k. Analyzing the GF(2)-rank of adjacency matrices in the context
of tree decompositions, we give a faster and more direct algorithm. Our
algorithm uses 2^{3k^2+O(k)}*n arithmetic operations and can be efficiently
implemented in parallel.Comment: v4: Minor error in Lemma 5.5 fixed, Section 6.6 added, minor
improvements. 44 pages, 14 figure
Structural parameterizations for boxicity
The boxicity of a graph is the least integer such that has an
intersection model of axis-aligned -dimensional boxes. Boxicity, the problem
of deciding whether a given graph has boxicity at most , is NP-complete
for every fixed . We show that boxicity is fixed-parameter tractable
when parameterized by the cluster vertex deletion number of the input graph.
This generalizes the result of Adiga et al., that boxicity is fixed-parameter
tractable in the vertex cover number.
Moreover, we show that boxicity admits an additive -approximation when
parameterized by the pathwidth of the input graph.
Finally, we provide evidence in favor of a conjecture of Adiga et al. that
boxicity remains NP-complete when parameterized by the treewidth.Comment: 19 page
Unboundedness and downward closures of higher-order pushdown automata
We show the diagonal problem for higher-order pushdown automata (HOPDA), and
hence the simultaneous unboundedness problem, is decidable. From recent work by
Zetzsche this means that we can construct the downward closure of the set of
words accepted by a given HOPDA. This also means we can construct the downward
closure of the Parikh image of a HOPDA. Both of these consequences play an
important role in verifying concurrent higher-order programs expressed as HOPDA
or safe higher-order recursion schemes
- …
