9,063 research outputs found
Numerical Evidence for the Observation of a Scalar Glueball
We compute from lattice QCD in the valence (quenched) approximation the
partial decay widths of the lightest scalar glueball to pairs of pseudoscalar
quark-antiquark states. These predictions and values obtained earlier for the
scalar glueball's mass are in good agreement with the observed properties of
and inconsistent with all other observed meson resonances.Comment: 12 pages of Latex, 3 PostsScript figures as separate uufil
Scalar Quarkonium Masses and Mixing with the Lightest Scalar Glueball
We evaluate the continuum limit of the valence (quenched) approximation to
the mass of the lightest scalar quarkonium state, for a range of different
quark masses, and to the mixing energy between these states and the lightest
scalar glueball. Our results support the interpretation of as
composed mainly of the lightest scalar glueball.Comment: 14 pages of Latex, 5 PostScript figure
Jets associated with Z^0 boson production in heavy-ion collisions at the LHC
The heavy ion program at the LHC will present unprecedented opportunities to
probe hot QCD matter, that is, the quark gluon plasma (QGP). Among these
exciting new probes are high energy partons associated with the production of a
Z^0 boson, or Z^0 tagged jets. Once produced, Z^0 bosons are essentially
unaffected by the strongly interacting medium produced in heavy-ion collisions,
and therefore provide a powerful signal of the initial partonic energy and
subsequent medium induced partonic energy loss. When compared with theory,
experimental measurements of Z^0 tagged jets will help quantify the jet
quenching properties of the QGP and discriminate between different partonic
energy loss formalisms. In what follows, I discuss the advantages of tagged
jets over leading particles, and present preliminary results of the production
and suppression of Z^0 tagged jets in relativistic heavy-ion collisions at LHC
energies using the Guylassy-Levai-Vitev (GLV) partonic energy loss formalism.Comment: To appear in the proceedings of the 2010 Winter Workshop on Nuclear
Dynamics, which was held in Ocho Rios, Jamaica, mon
Experimental tests on the lifetime Asymmetry
The experimental test problem of the left-right polarization-dependent
lifetime asymmetry is discussed. It shows that the existing experiments cannot
demonstrate the lifetime asymmetry to be right or wrong after analyzing the
measurements on the neutron, the muon and the tau lifetime, as well as the
experiment. However, It is pointed out emphatically that the SLD and the
E158 experiments, the measurements of the left-right integrated cross section
asymmetry in boson production by collisions and by
electron-electron M{\o}ller scattering, can indirectly demonstrate the lifetime
asymmetry. In order to directly demonstrate the lifetime asymmetry, we propose
some possible experiments on the decays of polarized muons. The precise
measurement of the lifetime asymmetry could have important significance for
building a muon collider, also in cosmology and astrophysics. It would provide
a sensitive test of the standard model in particle physics and allow for
exploration of the possible interactions.Comment: 11 pages, 1 figur
Scintillation efficiency of liquid argon in low energy neutron-argon scattering
Experiments searching for weak interacting massive particles with noble gases
such as liquid argon require very low detection thresholds for nuclear recoils.
A determination of the scintillation efficiency is crucial to quantify the
response of the detector at low energy. We report the results obtained with a
small liquid argon cell using a monoenergetic neutron beam produced by a
deuterium-deuterium fusion source. The light yield relative to electrons was
measured for six argon recoil energies between 11 and 120 keV at zero electric
drift field.Comment: 21 pages, 19 figures, 4 table
Study of nuclear recoils in liquid argon with monoenergetic neutrons
For the development of liquid argon dark matter detectors we assembled a
setup in the laboratory to scatter neutrons on a small liquid argon target. The
neutrons are produced mono-energetically (E_kin=2.45 MeV) by nuclear fusion in
a deuterium plasma and are collimated onto a 3" liquid argon cell operating in
single-phase mode (zero electric field). Organic liquid scintillators are used
to tag scattered neutrons and to provide a time-of-flight measurement. The
setup is designed to study light pulse shapes and scintillation yields from
nuclear and electronic recoils as well as from {\alpha}-particles at working
points relevant to dark matter searches. Liquid argon offers the possibility to
scrutinise scintillation yields in noble liquids with respect to the
populations of the two fundamental excimer states. Here we present experimental
methods and first results from recent data towards such studies.Comment: 9 pages, 8 figures, proceedings of TAUP 2011, to be published in
Journal of Physics: Conference Series (JCPS
Charmed Mesons Have No Discernable Color-Coulomb Attraction
Starting with a confining linear Lorentz scalar potential V_s and a Lorentz
vector potential V_v which is also linear but has in addition a color-Coulomb
attraction piece, -alpha_s/r, we solve the Dirac equation for the ground-state
c- and u-quark wave functions. Then, convolving V_v with the u-quark density,
we find that the Coulomb attraction mostly disappears, making an essentially
linear barV_v for the c-quark. A similar convolution using the c-quark density
also leads to an essentially linear tildeV_v for the u-quark. For bound cbar-c
charmonia, where one must solve using a reduced mass for the c-quarks, we also
find an essentially linear widehatV_v. Thus, the relativistic quark model
describes how the charmed-meson mass spectrum avoids the need for a
color-Coulomb attraction.Comment: 9 pages, 5 PDF figure
Masses of light tetraquarks and scalar mesons in the relativistic quark model
Masses of the ground state light tetraquarks are dynamically calculated in
the framework of the relativistic diquark-antidiquark picture. The internal
structure of the diquark is taken into account by calculating the form factor
of the diquark-gluon interaction in terms of the overlap integral of the
diquark wave functions. It is found that scalar mesons with masses below 1 GeV:
f_0(600) (\sigma), K^*_0(800) (\kappa), f_0(980) and a_0(980) agree well with
the light tetraquark interpretation.Comment: 9 pages, Report-no adde
Strong decays of in an extended chiral quark model
The strong decays of the resonance are investigated in an
extended chiral quark model by including the low-lying components
in addition to the component. The results show that these five-quark
components in contribute significantly to the and decays. The contributions to the decay
come from both the lowest energy and the next-to-lowest energy five-quarks
components, while the contributions to the decay come from only the
latter one. Taking these contributions into account, the description for the
strong decays of is improved, especially, for the puzzling large
ratio of the decays to and .Comment: 6 pages, 1 figur
Fluence Dependence of Charge Collection of irradiated Pixel Sensors
The barrel region of the CMS pixel detector will be equipped with ``n-in-n''
type silicon sensors. They are processed on DOFZ material, use the moderated
p-spray technique and feature a bias grid. The latter leads to a small fraction
of the pixel area to be less sensitive to particles. In order to quantify this
inefficiency prototype pixel sensors irradiated to particle fluences between
and 2.6\times 10^{15} \Neq have been bump bonded to
un-irradiated readout chips and tested using high energy pions at the H2 beam
line of the CERN SPS. The readout chip allows a non zero suppressed analogue
readout and is therefore well suited to measure the charge collection
properties of the sensors.
In this paper we discuss the fluence dependence of the collected signal and
the particle detection efficiency. Further the position dependence of the
efficiency is investigated.Comment: 11 Pages, Presented at the 5th Int. Conf. on Radiation Effects on
Semiconductor Materials Detectors and Devices, October 10-13, 2004 in
Florence, Italy, v3: more typos corrected, minor changes required by the
refere
- …
