34,659 research outputs found

    Troponins, Acute Coronary Syndrome and Renal Disease: From Acute Kidney Injury Through End-stage Kidney Disease

    Get PDF
    The diagnosis of acute coronary syndromes (ACS) is heavily dependent on cardiac biomarker assays, particularly cardiac troponins. ACS, particularly non-ST segment elevation MI, are more common in patients with acute kidney injury, chronic kidney disease (CKD) and end-stage kidney disease (ESKD), are associated with worse outcomes than in patients without kidney disease and are often difficult to diagnose and treat. Hence, early accurate diagnosis of ACS in kidney disease patients is important using easily available tools, such as cardiac troponins. However, the diagnostic reliability of cardiac troponins has been suboptimal in patients with kidney disease due to possible decreased clearance of troponin with acute and chronic kidney impairment and low levels of troponin secretion due to concomitant cardiac muscle injury related to left ventricular hypertrophy, inflammation and fibrosis. This article reviews the metabolism and utility of cardiac biomarkers in patients with acute and chronic kidney diseases. Cardiac troponins are small peptides that accumulate in both acute and chronic kidney diseases due to impaired excretion. Hence, troponin concentrations rise and fall with acute kidney injury and its recovery, limiting their use in the diagnosis of ACS. Troponin concentrations are chronically elevated in CKD and ESKD, are associated with poor prognosis and decrease the sensitivity and specificity for diagnosis of ACS. Yet, the evidence indicates that the use of high-sensitivity troponins can confirm or exclude a diagnosis of ACS in the emergency room in a significant proportion of kidney disease patients; those patients in whom the results are equivocal may need longer in-hospital assessment

    Direct measurement of the fine-structure interval in alkali atoms using diode lasers

    Get PDF
    We demonstrate a technique for directly measuring the fine-structure interval in alkali atoms using two frequency-stabilized diode lasers. Each laser has a linewidth of order 1 MHz and precise tunability: one laser is tuned to a hyperfine transition in the D_1 line, and the other laser to a hyperfine transition in the D_2 line. The outputs of the lasers are fed into a scanning Michelson interferometer that measures the ratio of their wavelengths accurately. To illustrate the technique, we measure the fine-structure interval in Rb, and obtain a value of 237.6000(3)(5) cm^-1 for the hyperfine-free 5P_{3/2} - 5P_{1/2} interval.Comment: 3 pages, 2 figures, to be published in Applied Physics Letters, 20 May 2002 editio

    Explicit Bosonization of the Massive Thirring Model in 3+1 Dimensions

    Get PDF
    We bosonize the Massive Thirring Model in 3+1D for small coupling constant and arbitrary mass. The bosonized action is explicitly obtained both in terms of a Kalb-Ramond tensor field as well as in terms of a dual vector field. An exact bosonization formula for the current is derived. The small and large mass limits of the bosonized theory are examined in both the direct and dual forms. We finally obtain the exact bosonization of the free fermion with an arbitrary mass.Comment: Latex, 7 page

    The static potential in QED3_3 with non-minimal coupling

    Full text link
    Here we study the effect of the non-minimal coupling j^{\mu}\eps \partial^{\nu} A^{\alpha} on the static potential in multiflavor QED3_3. Both cases of four and two components fermions are studied separately at leading order in the 1/N1/N expansion. Although a non-local Chern-Simons term appears, in the four components case the photon is still massless leading to a confining logarithmic potential similar to the classical one. In the two components case, as expected, the parity breaking fermion mass term generates a traditional Chern-Simons term which makes the photon massive and we have a screening potential which vanishes at large inter-charge distance. The extra non-minimal couplings have no important influence on the static potential at large inter-charge distances. However, interesting effects show up at finite distances. In particular, for strong enough non-minimal coupling we may have a new massive pole in the photon propagator while in the opposite limit there may be no poles at all in the irreducible case. We also found that, in general, the non-minimal couplings lead to a finite range {\bf repulsive} force between charges of opposite signs.Comment: 19 pages and 7 figure

    High-accuracy wavemeter based on a stabilized diode laser

    Get PDF
    We have built a high-accuracy wavelength meter for tunable lasers using a scanning Michelson interferometer and a reference laser of known wavelength. The reference laser is a frequency stabilized diode laser locked to an atomic transition in Rb. The wavemeter has a statistical error per measurement of 5 parts in 10710^7 which can be reduced considerably by averaging. Using a second stabilized diode laser, we have verified that systematic errors are below 4 parts in 10810^8.Comment: 3 pages, 2 figure

    Study of Dissipative Collisions of 20^{20}Ne (\sim7-11 MeV/nucleon) + 27^{27}Al

    Full text link
    The inclusive energy distributions of complex fragments (3 \leqZ \leq 9) emitted in the reactions 20^{20}Ne (145, 158, 200, 218 MeV) + 27^{27}Al have been measured in the angular range 10o^{o} - 50o^{o}. The fusion-fission and the deep-inelastic components of the fragment yield have been extracted using multiple Gaussian functions from the experimental fragment energy spectra. The elemental yields of the fusion-fission component have been found to be fairly well exlained in the framework of standard statistical model. It is found that there is strong competition between the fusion-fission and the deep-inelastic processes at these energies. The time scale of the deep-inelastic process was estimated to be typically in the range of \sim 1021^{-21} - 1022^{-22} sec., and it was found to decrease with increasing fragment mass. The angular momentum dissipations in fully energy damped deep-inelastic process have been estimated from the average energies of the deep-inelastic components of the fragment energy spectra. It has been found that, the estimated angular momentum dissipations, for lighter fragments in particular, are more than those predicted by the empirical sticking limit.Comment: 16 pages, 9 figure

    The propensity of molecules to spatially align in intense light fields

    Get PDF
    The propensity of molecules to spatially align along the polarization vector of intense, pulsed light fields is related to readily-accessible parameters (molecular polarizabilities, moment of inertia, peak intensity of the light and its pulse duration). Predictions can now be made of which molecules can be spatially aligned, and under what circumstances, upon irradiation by intense light. Accounting for both enhanced ionization and hyperpolarizability, it is shown that {\it all} molecules can be aligned, even those with the smallest static polarizability, when subjected to the shortest available laser pulses (of sufficient intensity).Comment: 8 pages, 4 figures, to be submitted to PR

    Phase space dynamics of overdamped quantum systems

    Full text link
    The phase space dynamics of dissipative quantum systems in strongly condensed phase is considered. Based on the exact path integral approach it is shown that the Wigner transform of the reduced density matrix obeys a time evolution equation of Fokker-Planck type valid from high down to very low temperatures. The effect of quantum fluctuations is discussed and the accuracy of these findings is tested against exact data for a harmonic system.Comment: 7 pages, 2 figures, to appear in Euro. Phys. Let

    Dual Projection and Selfduality in Three Dimensions

    Get PDF
    We discuss the notion of duality and selfduality in the context of the dual projection operation that creates an internal space of potentials. Contrary to the prevailing algebraic or group theoretical methods, this technique is applicable to both even and odd dimensions. The role of parity in the kernel of the Gauss law to determine the dimensional dependence is clarified. We derive the appropriate invariant actions, discuss the symmetry groups and their proper generators. In particular, the novel concept of duality symmetry and selfduality in Maxwell theory in (2+1) dimensions is analysed in details. The corresponding action is a 3D version of the familiar duality symmetric electromagnetic theory in 4D. Finally, the duality symmetric actions in the different dimensions constructed here manifest both the SO(2) and Z2Z_2 symmetries, contrary to conventional results.Comment: 20 pages, late
    corecore