69,453 research outputs found

    A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation

    Get PDF
    A physical-space version of the stretched-vortex subgrid-stress model is presented and applied to large-eddy simulations of incompressible flows. This version estimates the subgrid-kinetic energy required for evaluation of the subgrid-stress tensor using local second-order structure-function information of the resolved velocity field at separations of order the local cell size. A relation between the structure function and the energy spectrum is derived using the kinematic assumptions of the stretched-vortex model for locally homogeneous anisotropic turbulence. Results of large-eddy simulations using this model are compared to experimental and direct numerical simulation data. Comparisons are shown for the decay of kinetic energy and energy spectra of decaying isotropic turbulence and for mean velocities, root-mean-square velocity fluctuations and turbulence-kinetic energy balances of channel flow at three different Reynolds numbers

    Instability of three dimensional conformally dressed black hole

    Get PDF
    The three dimensional black hole solution of Einstein equations with negative cosmological constant coupled to a conformal scalar field is proved to be unstable against linear circularly symmetric perturbations.Comment: 5 pages, REVTe

    Management of invasive Allee species

    Get PDF
    In this study, we use a discrete, two-patch population model of an Allee species to examine different methods in managing invasions. We first analytically examine the model to show the presence of the strong Allee effect, and then we numerically explore the model to test the effectiveness of different management strategies. As expected invasion is facilitated by lower Allee thresholds, greater carrying capacities and greater proportions of dispersers. These effects are interacting, however, and moderated by population growth rate. Using the gypsy moth as an example species, we demonstrate that the effectiveness of different invasion management strategies is context-dependent, combining complementary methods may be preferable, and the preferred strategy may differ geographically. Specifically, we find methods for restricting movement to be more effective in areas of contiguous habitat and high Allee thresholds, where methods involving mating disruptions and raising Allee thresholds are more effective in areas of high habitat fragmentation

    The signature of the magnetorotational instability in the Reynolds and Maxwell stress tensors in accretion discs

    Full text link
    The magnetorotational instability is thought to be responsible for the generation of magnetohydrodynamic turbulence that leads to enhanced outward angular momentum transport in accretion discs. Here, we present the first formal analytical proof showing that, during the exponential growth of the instability, the mean (averaged over the disc scale-height) Reynolds stress is always positive, the mean Maxwell stress is always negative, and hence the mean total stress is positive and leads to a net outward flux of angular momentum. More importantly, we show that the ratio of the Maxwell to the Reynolds stresses during the late times of the exponential growth of the instability is determined only by the local shear and does not depend on the initial spectrum of perturbations or the strength of the seed magnetic. Even though we derived these properties of the stress tensors for the exponential growth of the instability in incompressible flows, numerical simulations of shearing boxes show that this characteristic is qualitatively preserved under more general conditions, even during the saturated turbulent state generated by the instability.Comment: 9 pages, 4 figures. Minor revisions. Accepted for publication in MNRA

    Transformation media that rotate electromagnetic fields

    Get PDF
    We suggest a way to manipulate electromagnetic wave by introducing a rotation mapping of coordinates that can be realized by a specific transformation of permittivity and permeability of a shell surrounding an enclosed domain. Inside the enclosed domain, the information from outside will appear as if it comes from a different angle. Numerical simulations were performed to illustrate these properties.Comment: 5 pages, 3 figure

    How the Charge Can Affect the Formation of Gravastars

    Full text link
    In recent work we physically interpreted a special gravastar solution characterized by a zero Schwarzschild mass. In fact, in that case, none gravastar was formed and the shell expanded, leaving behind a de Sitter or a Minkowski spacetime, or collapsed without forming an event horizon, originating what we called a massive non-gravitational object. This object has two components of non zero mass but the exterior spacetime is Minkowski or de Sitter. One of the component is a massive thin shell and the other one is de Sitter spacetime inside. The total mass of this object is zero Schwarzschild mass, which characterizes an exterior vacuum spacetime. Here, we extend this study to the case where we have a charged shell. Now, the exterior is a Reissner-Nordstr\"om spacetime and, depending on the parameter ω=1γ\omega=1-\gamma of the equation of state of the shell, and the charge, a gravastar structure can be formed. We have found that the presence of the charge contributes to the stability of the gravastar, if the charge is greater than a critical value. Otherwise, a massive non-gravitational object is formed for small charges.Comment: 17 pages and 7 figures, several typos corrected, accepted for publication in JCA

    Sequential expression of Lgr5 and Col22a1 in developing synovial joints marks the progressive differentiation of progenitor cells to articular chondrocytes

    Get PDF
    Poster Presentation - Theme 3: Development & stem cellsHealthy articular cartilage in synovial joints provides a smooth, wear-resistant structure that reduces friction and absorbs impact forces. They are enclosed in joint capsules, containing a fibrous connective outer layer and a synovial inner layer, and stabilized by ligaments and tendons. Degenerative joint diseases involve destruction of the articular cartilage. Damaged articular cartilage is difficult to heal due to their poor regenerative capacity, leading to widespread suffering from arthritis and joint injuries. A clear understanding of how a synovial joint develops and the ...postprin

    In-vivo magnetic resonance imaging of hyperpolarized silicon particles

    Full text link
    Silicon-based micro and nanoparticles have gained popularity in a wide range of biomedical applications due to their biocompatibility and biodegradability in-vivo, as well as a flexible surface chemistry, which allows drug loading, functionalization and targeting. Here we report direct in-vivo imaging of hyperpolarized 29Si nuclei in silicon microparticles by MRI. Natural physical properties of silicon provide surface electronic states for dynamic nuclear polarization (DNP), extremely long depolarization times, insensitivity to the in-vivo environment or particle tumbling, and surfaces favorable for functionalization. Potential applications to gastrointestinal, intravascular, and tumor perfusion imaging at sub-picomolar concentrations are presented. These results demonstrate a new background-free imaging modality applicable to a range of inexpensive, readily available, and biocompatible Si particles.Comment: Supplemental Material include
    corecore