309 research outputs found
Temporal Aspects of Smart Contracts for Financial Derivatives
Implementing smart contracts to automate the performance of high-value
over-the-counter (OTC) financial derivatives is a formidable challenge. Due to
the regulatory framework and the scale of financial risk if a contract were to
go wrong, the performance of these contracts must be enforceable in law and
there is an absolute requirement that the smart contract will be faithful to
the intentions of the parties as expressed in the original legal documentation.
Formal methods provide an attractive route for validation and assurance, and
here we present early results from an investigation of the semantics of
industry-standard legal documentation for OTC derivatives. We explain the need
for a formal representation that combines temporal, deontic and operational
aspects, and focus on the requirements for the temporal aspects as derived from
the legal text. The relevance of this work extends beyond OTC derivatives and
is applicable to understanding the temporal semantics of a wide range of legal
documentation
Bulk Band Gaps in Divalent Hexaborides
Complementary angle-resolved photoemission and bulk-sensitive k-resolved
resonant inelastic x-ray scattering of divalent hexaborides reveal a >1 eV
X-point gap between the valence and conduction bands, in contradiction to the
band overlap assumed in several models of their novel ferromagnetism. This
semiconducting gap implies that carriers detected in transport measurements
arise from defects, and the measured location of the bulk Fermi level at the
bottom of the conduction band implicates boron vacancies as the origin of the
excess electrons. The measured band structure and X-point gap in CaB_6
additionally provide a stringent test case for proper inclusion of many-body
effects in quasi-particle band calculations.Comment: 4 pages, 3 figures; new RIXS analysis; accepted for publication in
PR
A common graphical form
We present the Common Graphical Form, a low level, abstract machine independent structure which provides a basis for implementing graph reduction on distributed processors. A key feature of the structure is its ability to model disparate abstract machines in a uniform manner; this enables us to experiment with different abstract machines without having to recode major parts of the run-time system for each additional machine. Because we are dealing with a uniform data structure it is possible to build a suite of performance measurement tools to examine interprocessor data-flow and to apply these tools to different abstract machines in order to make relative comparisons between them at run-time. As a bonus to our design brief we exploit the unifying characteristics of the Common Graphical Form by using it as an intermediate language at compile-time
Russia-UK collaboration in paleontology: past, present, and future
There is a long history of collaboration between Russia and the United Kingdom in paleontology. This began, arguably, in 1821, with the seminal work by William Fox-Strangways, who produced a geological map of the area around St Petersburg. Most famously, Roderick Murchison carried out extensive surveying and observations throughout European Russia in 1840 and 1841, and published a major monograph on geology and paleontology of European Russia in 1845. Since then, and continuing today, there have been many fruitful collaborations on Precambrian life, Paleozoic marine organisms, terrestrialization of plants and vertebrates, the Permian–Triassic mass extinction, fossil mammals, human evolution, and conservation paleobiology
High-temperature ferromagnetism of electrons in narrow impurity bands: Application to CaB
Ferromagnetism with high Curie temperature , well above room
temperature, and very small saturation moment has been reported in various
carbon and boron systems. It is argued that the magnetization must be very
inhomogeneous with only a small fraction of the sample ferromagnetically
ordered. It is shown that a possible source of high within the
ferromagnetic regions is itinerant electrons occupying a narrow impurity band.
Correlation effects do not reduce the effective interaction which enters the
Stoner criterion in the same way as in a bulk band. It is also shown how, in
the impurity band case, spin wave excitations may not be effective in lowering
below its value given by Stoner theory. These ideas are applied to
CaB and a thorough review of the experimental situation in this material is
given. It is suggested that the intrinsic magnetism of the B and O
dimers might be exploited in suitable structures containing these elements.Comment: 26 pages, 2 figure
Using virtual reality to train infection prevention: what predicts performance and behavioral intention?
Training medical professionals for hand hygiene is challenging, especially due to the invisibility of microorganisms to the human eye. As the use of virtual reality (VR) in medical training is still novel, this exploratory study investigated how preexisting technology acceptance and in-training engagement predict VR hand hygiene performance scores. The effect of training in the VR environment on the behavioral intention to further use this type of training device (a component of technology acceptance) was also investigated. Participants completed a VR hand hygiene training comprising three levels of the same task with increasing difficulty. We measured technology acceptance, composed of performance expectancy, effort expectancy, and behavioral intention, pre- and post-training, and in-training engagement using adaptations of existing questionnaires. We used linear regression models to determine predictors of performance in level-3 and of behavioral intention to further use VR training. Forty-three medical students participated in this exploratory study. In-training performance significantly increased between level-1 and level-3. Performance in level-3 was predicted by prior performance expectancy and engagement during the training session. Intention to further use VR to learn medical procedures was predicted by both prior effort expectancy and engagement. Our results provide clarification on the relationship between VR training, engagement, and technology acceptance. Future research should assess the long-term effectiveness of hand hygiene VR training and the transferability of VR training to actual patient care in natural settings. A more complete VR training could also be developed, with additional levels including more increased difficulty and additional medical tasks
Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy
How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures
Machine Learning in Automated Text Categorization
The automated categorization (or classification) of texts into predefined
categories has witnessed a booming interest in the last ten years, due to the
increased availability of documents in digital form and the ensuing need to
organize them. In the research community the dominant approach to this problem
is based on machine learning techniques: a general inductive process
automatically builds a classifier by learning, from a set of preclassified
documents, the characteristics of the categories. The advantages of this
approach over the knowledge engineering approach (consisting in the manual
definition of a classifier by domain experts) are a very good effectiveness,
considerable savings in terms of expert manpower, and straightforward
portability to different domains. This survey discusses the main approaches to
text categorization that fall within the machine learning paradigm. We will
discuss in detail issues pertaining to three different problems, namely
document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey
Children’s friendships in diverse primary schools: teachers and the processes of policy enactment
Drawing on data from a project exploring children's and adults’ friendships across social class and ethnic difference, this paper focuses on the enactment of national and institutional policy around children’s friendships as realized in three primary schools in diverse urban areas in London. Through a focus on the way in which social and emotional learning (SEL) and teachers’ understandings of children’s friendships seek to govern children’s friendship behaviours, we turn to Foucault’s work to explore how power shapes relations between policy frameworks and teachers’ practices, and between those who teach and those who are taught. We discuss the disciplinary potential of SEL and teachers’ ‘common sense’ understandings of children’s friendships, but conclude by noting possibilities for teachers to create spaces in which all children can safely explore the nature of friendships
Mechanisms underlying a thalamocortical transformation during active tactile sensation
During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit
- …
