18,233 research outputs found

    Microelectromagnets for Trapping and Manipulating Ultracold Atomic Quantum Gases

    Full text link
    We describe the production and characterization of microelectromagnets made for trapping and manipulating atomic ensembles. The devices consist of 7 fabricated parallel copper conductors 3 micrometer thick, 25mm long, with widths ranging from 3 to 30 micrometer, and are produced by electroplating a sapphire substrate. Maximum current densities in the wires up to 6.5 * 10^6 A / cm^2 are achieved in continuous mode operation. The device operates successfully at a base pressure of 10^-11 mbar. The microstructures permit the realization of a variety of magnetic field configurations, and hence provide enormous flexibility for controlling the motion and the shape of Bose-Einstein condensates.Comment: 4 pages, 3 figure

    Observation of Lasing Mediated by Collective Atomic Recoil

    Full text link
    We observe the buildup of a frequency-shifted reverse light field in a unidirectionally pumped high-QQ optical ring cavity serving as a dipole trap for cold atoms. This effect is enhanced and a steady state is reached, if via an optical molasses an additional friction force is applied to the atoms. We observe the displacement of the atoms accelerated by momentum transfer in the backscattering process and interpret our observations in terms of the collective atomic recoil laser. Numerical simulations are in good agreement with the experimental results.Comment: 4 pages, 3 figure

    Direct Measurement of intermediate-range Casimir-Polder potentials

    Full text link
    We present the first direct measurements of Casimir-Polder forces between solid surfaces and atomic gases in the transition regime between the electrostatic short-distance and the retarded long-distance limit. The experimental method is based on ultracold ground-state Rb atoms that are reflected from evanescent wave barriers at the surface of a dielectric glass prism. Our novel approach does not require assumptions about the potential shape. The experimental data confirm the theoretical prediction in the transition regime.Comment: 4 pages, 3 figure

    Measuring nonadiabaticity of molecular quantum dynamics with quantum fidelity and with its efficient semiclassical approximation

    Full text link
    We propose to measure nonadiabaticity of molecular quantum dynamics rigorously with the quantum fidelity between the Born-Oppenheimer and fully nonadiabatic dynamics. It is shown that this measure of nonadiabaticity applies in situations where other criteria, such as the energy gap criterion or the extent of population transfer, fail. We further propose to estimate this quantum fidelity efficiently with a generalization of the dephasing representation to multiple surfaces. Two variants of the multiple-surface dephasing representation (MSDR) are introduced, in which the nuclei are propagated either with the fewest-switches surface hopping (FSSH) or with the locally mean field dynamics (LMFD). The LMFD can be interpreted as the Ehrenfest dynamics of an ensemble of nuclear trajectories, and has been used previously in the nonadiabatic semiclassical initial value representation. In addition to propagating an ensemble of classical trajectories, the MSDR requires evaluating nonadiabatic couplings and solving the Schr\"{o}dinger (or more generally, the quantum Liouville-von Neumann) equation for a single discrete degree of freedom. The MSDR can be also used to measure the importance of other terms present in the molecular Hamiltonian, such as diabatic couplings, spin-orbit couplings, or couplings to external fields, and to evaluate the accuracy of quantum dynamics with an approximate nonadiabatic Hamiltonian. The method is tested on three model problems introduced by Tully, on a two-surface model of dissociation of NaI, and a three-surface model including spin-orbit interactions. An example is presented that demonstrates the importance of often-neglected second-order nonadiabatic couplings.Comment: 14 pages, 4 figures, submitted to J. Chem. Phy

    Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry

    Full text link
    We investigate the response of two-dimensional pattern forming systems with a broken up-down symmetry, such as chemical reactions, to spatially resonant forcing and propose related experiments. The nonlinear behavior immediately above threshold is analyzed in terms of amplitude equations suggested for a 1:21:2 and 1:11:1 ratio between the wavelength of the spatial periodic forcing and the wavelength of the pattern of the respective system. Both sets of coupled amplitude equations are derived by a perturbative method from the Lengyel-Epstein model describing a chemical reaction showing Turing patterns, which gives us the opportunity to relate the generic response scenarios to a specific pattern forming system. The nonlinear competition between stripe patterns and distorted hexagons is explored and their range of existence, stability and coexistence is determined. Whereas without modulations hexagonal patterns are always preferred near onset of pattern formation, single mode solutions (stripes) are favored close to threshold for modulation amplitudes beyond some critical value. Hence distorted hexagons only occur in a finite range of the control parameter and their interval of existence shrinks to zero with increasing values of the modulation amplitude. Furthermore depending on the modulation amplitude the transition between stripes and distorted hexagons is either sub- or supercritical.Comment: 10 pages, 12 figures, submitted to Physical Review

    Diffraction of a Bose-Einstein condensate from a Magnetic Lattice on a Micro Chip

    Full text link
    We experimentally study the diffraction of a Bose-Einstein condensate from a magnetic lattice, realized by a set of 372 parallel gold conductors which are micro fabricated on a silicon substrate. The conductors generate a periodic potential for the atoms with a lattice constant of 4 microns. After exposing the condensate to the lattice for several milliseconds we observe diffraction up to 5th order by standard time of flight imaging techniques. The experimental data can be quantitatively interpreted with a simple phase imprinting model. The demonstrated diffraction grating offers promising perspectives for the construction of an integrated atom interferometer.Comment: 4 pages, 4 figure

    Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing

    Get PDF
    Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process
    corecore