108 research outputs found
The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria
Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel
Bibliometric analysis of themes competitive intelligence, knowledge management and organizational knowledge in Institutional Repository University of Brasília
Trata da análise dos temas Inteligência Competitiva (IC),
Gestão do Conhecimento (GC) e Conhecimento
Organizacional (CO), no Repositório Institucional da
Universidade da Brasília (RIUnB), que está disponível em
acesso aberto desde setembro de 2008. O objetivo é
verificar a produção científica sobre as áreas de pesquisa,
a partir dos documentos que constam no RIUnB. O
método de trabalho consistiu nos estudos bibliométricos,
a fim de se inteirar sobre a produção de trabalhos
referentes ao conhecimento resultante do
desenvolvimento de pesquisas no âmbito institucional,
para conhecer a comunidade. Os resultados apontam para
um crescimento notório desses temas na ciência da
informação, com perspectiva de crescimento em outras
áreas: administração, engenharia elétrica, educação e
gestão social e trabalho, demonstrando sua potencial
interdisciplinaridade; houve maior concentração de
publicação nos temas gestão do conhecimento,
conhecimento organizacional e inteligência competitiva,
respectivamente, e existe uma concentração dessas
publicações em três pesquisadores na comunidade da
Faculdade de Ciência da Informação (FCI). Conclui-se que
os temas são mais frequentes na área de ciência da informação, entretanto, nota-se o seu aparecimento em
outras áreas do conhecimento, na UnB: administração,
engenharia elétrica, educação e gestão social e do
trabalho. Esses dados podem revelar uma tendência de
consolidação dos temas de pesquisa em outras áreas. ________________________________________________________________________________________ ABSTRACTThis analysis of topics Competitive Intelligence (CI),
Knowledge Management (KM) and Organizational
Knowledge (CO) in the Institutional Repository of the
University of Brasília (RIUnB) which is available in open
access since September 2008. The aim is to check the
scientific literature on the research areas from the
documents listed in RIUnB. The working method consisted
in bibliometric studies, in order to learn about the
production of works relating to knowledge resulting from
research development at the institutional level to know
the community. The results indicate a remarkable growth
of these themes in information science, with growth
prospects in other areas: administration, electrical
engineering, management and education and social work,
demonstrating its potential interdisciplinarity, there was a
higher concentration of publishing on issues of knowledge
management, organizational knowledge and competitive
intelligence, respectively, and there is a concentration of
such publications in three community researchers in the
Faculty of Information Science (FCI). We conclude that
the issues are more frequent in the area of information
science, however, note its appearance in other areas of
knowledge in UNB: administration, electrical engineering,
education and social management and labor. These data
may reveal a trend of consolidation of research topics in
other areas
Nanopores: maltoporin channel as a sensor for maltodextrin and lambda-phage
BACKGROUND: To harvest nutrition from the outside bacteria e.g. E. coli developed in the outer cell wall a number of sophisticated channels called porins. One of them, maltoporin, is a passive specific channel for the maltodextrin uptake. This channel was also named LamB as the bacterial virus phage Lambda mis-uses this channel to recognise the bacteria. The first step is a reversible binding followed after a lag phase by DNA injection. To date little is known about the binding capacity and less on the DNA injection mechanism. To elucidate the mechanism and to show the sensitivity of our method we reconstituted maltoporin in planar lipid membranes. Application of an external transmembrane electric field causes an ion current across the channel. Maltoporin channel diameter is around a few Angstroem. At this size the ion current is extremely sensitive to any modification of the channels surface. Protein conformational changes, substrate binding etc will cause fluctuations reflecting the molecular interactions with the channel wall. The recent improvement in ion current fluctuation analysis allows now studying the interaction of solutes with the channel on a single molecular level. RESULTS: We could demonstrate the asymmetry of the bacterial phage Lambda binding to its natural receptor maltoporin. CONCLUSION: We suggest that this type of measurement can be used as a new type of biosensors
Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition
We report on the fabrication and electrical characterization of functionalized solid-state nanopores in low stress silicon nitride membranes. First, a pore of approximately 50 nm diameter was drilled using a focused ion beam technique, followed by the local deposition of silicon dioxide. A low-energy electron beam induced the decomposition of adsorbed tetraethyl orthosilicate resulting in site-selective functionalization of the nanopore by the formation of highly insulating silicon oxide. The deposition occurs monolayer by monolayer, which allows for control of the final diameter with subnanometer accuracy. Changes in the pore diameter could be monitored in real time by scanning electron microscopy. Recorded ion currents flowing through a single nanopore revealed asymmetry in the ion conduction properties with the sign of the applied potential. The low-frequency excess noise observed at negative voltage originated from stepwise conductance fluctuations of the open pore
Anti-infectives in Drug Delivery-Overcoming the Gram-Negative Bacterial Cell Envelope.
Infectious diseases are becoming a major menace to the state of health worldwide, with difficulties in effective treatment especially of nosocomial infections caused by Gram-negative bacteria being increasingly reported. Inadequate permeation of anti-infectives into or across the Gram-negative bacterial cell envelope, due to its intrinsic barrier function as well as barrier enhancement mediated by resistance mechanisms, can be identified as one of the major reasons for insufficient therapeutic effects. Several in vitro, in silico, and in cellulo models are currently employed to increase the knowledge of anti-infective transport processes into or across the bacterial cell envelope; however, all such models exhibit drawbacks or have limitations with respect to the information they are able to provide. Thus, new approaches which allow for more comprehensive characterization of anti-infective permeation processes (and as such, would be usable as screening methods in early drug discovery and development) are desperately needed. Furthermore, delivery methods or technologies capable of enhancing anti-infective permeation into or across the bacterial cell envelope are required. In this respect, particle-based carrier systems have already been shown to provide the opportunity to overcome compound-related difficulties and allow for targeted delivery. In addition, formulations combining efflux pump inhibitors or antimicrobial peptides with anti-infectives show promise in the restoration of antibiotic activity in resistant bacterial strains. Despite considerable progress in this field however, the design of carriers to specifically enhance transport across the bacterial envelope or to target difficult-to-treat (e.g., intracellular) infections remains an urgently needed area of improvement. What follows is a summary and evaluation of the state of the art of both bacterial permeation models and advanced anti-infective formulation strategies, together with an outlook for future directions in these fields
Functional asymmetry of transmembrane segments in nicotinic acetylcholine receptors
Nicotinic acetylcholine receptors are heteropentameric ion channels that open upon activation to a single conducting state. The second transmembrane segments of each subunit were identified as channel-forming elements, but their respective contribution in the gating process remains unclear. Moreover, the detailed impact of variations of the membrane potential, such as occurring during an action potential, on the transmembrane domains, is unknown. Residues at the 12' position, close to the center of each second transmembrane segment, play a key role in channel gating. We examined their functional symmetry by substituting a lysine to that position of each subunit and measuring the electrical activity of single channels. For 12' lysines in the alpha, gamma and delta subunits rapid transitions between an intermediate and large conductance appeared, which are interpreted as single lysine protonation events. From the kinetics of these transitions we calculated the pK (a) values of respective lysines and showed that they vary differently with membrane hyperpolarization. Respective mutations in beta or epsilon subunits gave receptors with openings of either intermediate or large conductance, suggesting extreme pK (a) values in two open state conformations. The results demonstrate that these parts of the highly homologous transmembrane domains, as probed by the 12' lysines, sense unequal microenvironments and are differently affected by physiologically relevant voltage changes. Moreover, observation of various gating events for mutants of alpha subunits suggests that the open channel pore exists in multiple conformations, which in turn supports the notion of functional asymmetry of the channel
Modulation of proton-induced current fluctuations in the human nicotinic acetylcholine receptor channel
The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel that switches upon activation from a closed state to a full conducting state. We found that the mutation delta S268K, located at 12' position of the second transmembrane domain of the delta subunit of the human nAChR generates a long-lived intermediate conducting state, from which openings to a wild-type like conductance level occur on a submillisecond time scale. Aiming to understand the interplay between structural changes near the 12' position and channel gating, we investigated the influence of various parameters: different ligands (acetylcholine, choline and epibatidine), ligand concentrations, transmembrane voltages and both fetal and adult nAChRs. Since sojourns in the high conductance state are not fully resolved in time, spectral noise analysis was used as a complement to dwell time analysis to determine the gating rate constants. Open channel current fluctuations are described by a two-state Markov model. The characteristic time of the process is markedly influenced by the ligand and the receptor type, whereas the frequency of openings to the high conductance state increases with membrane hyperpolarization. Conductance changes are discussed with regard to reversible transfer reaction of single protons at the lysine 12' side chain
Local solid-state modification of nanopore surface charges
The last decade, nanopores have emerged as a new and interesting tool for the
study of biological macromolecules like proteins and DNA. While biological
pores, especially alpha-hemolysin, have been promising for the detection of
DNA, their poor chemical stability limits their use. For this reason,
researchers are trying to mimic their behaviour using more stable, solid-state
nanopores. The most successful tools to fabricate such nanopores use high
energy electron or ions beams to drill or reshape holes in very thin membranes.
While the resolution of these methods can be very good, they require tools that
are not commonly available and tend to damage and charge the nanopore surface.
In this work, we show nanopores that have been fabricated using standard
micromachning techniques together with EBID, and present a simple model that is
used to estimate the surface charge. The results show that EBID with a silicon
oxide precursor can be used to tune the nanopore surface and that the surface
charge is stable over a wide range of concentrations.Comment: 10 pages, 6 figure
Immune activation of the p75 neurotrophin receptor: implications in neuroinflammation
Despite structural similarity with other tumor necrosis factor receptor superfamily (TNFRSF) members, the p75 neurotrophin receptor (p75NTR, TNFR16) mediates pleiotropic biological functions not shared with other TNFRs. The high level of p75NTR expression in the nervous system instead of immune cells, its utilization of co-receptors, and its interaction with soluble dimeric, rather than soluble or cell-tethered trimeric ligands are all characteristics which distinguish it from most other TNFRs. Here, we compare these attributes to other members of the TNFR superfamily. In addition, we describe the recent evolutionary adaptation in B7-1 (CD80), an immunoglobulin (Ig) superfamily member, which allows engagement to neuronally-expressed p75NTR. B7-1-mediated binding to p75NTR occurs in humans and other primates, but not lower mammals due to specific sequence changes that evolved recently in primate B7-1. This discovery highlights an additional mechanism by which p75NTR can respond to inflammatory cues and trigger synaptic elimination in the brain through engagement of B7-1, which was considered to be immune-restricted. These observations suggest p75NTR does share commonality with other immune co-modulatory TNFR family members, by responding to immunoregulatory cues. The evolution of primate B7-1 to bind and elicit p75NTR-mediated effects on neuronal morphology and function are discussed in relationship to immune-driven modulation of synaptic actions during injury or inflammation
Micro- and nanostructured devices for investigating biomolecular interactions
Cell membrane receptors and ion channels are essential in many different cellular processes. To analyse the activity of membrane proteins in vesicles and biological cells, we fabricated micro- nanostructured chips, enabling the application of electrophysiology and fluorescence-based techniques. A SU-8 biochip was developed for simultaneously micromanipulating and investigating optically and electrically individual vesicles in a microfluidic channel. Lipid vesicles were transported, positioned by electrophoretic movement on a micrometer sized aperture, and fused to form a planar suspended membrane, which is suited to study ion channel activity. Aiming to investigate G protein-coupled receptor signaling pathways in native-like environment, we developed a method for producing well-oriented planar cell membrane sheets on silicon films containing nanoaperture arrays. The accessibility of extracellular and cytosolic surfaces was demonstrated by targeting membrane constituents side-specifically with fluorescent markers. Our approach can be applied for studying membrane proteins from a large variety of cells and cellular organelles using chip-based screening assays
- …
