11,303 research outputs found
Computational Mechanism Design: A Call to Arms
Game theory has developed powerful tools for analyzing decision making in systems with multiple autonomous actors. These tools, when tailored to computational settings, provide a foundation for building multiagent software systems. This tailoring gives rise to the field of computational mechanism design, which applies economic principles to computer systems design
Effect of simultaneous application of field and pressure on magnetic transitions in LaCaMnO
We study combined effect of hydrostatic pressure and magnetic field on the
magnetization of LaCaMnO. We do not observe any
significant effect of pressure on the paramagnetic to ferromagnetic transition.
However, pressure asymmetrically affects the thermal hysteresis across the
ferro-antiferromagnetic first-order transition, which has strong field
dependence. Though the supercooling (T*) and superheating (T**) temperatures
decrease and the value of magnetization at 5K (M) increases with
pressure, T* and M shows abrupt changes in tiny pressure of 0.68kbar.
These anomalies enhance with field. In 7Tesla field, transition to
antiferromagnetic phase disappears in 0.68kbar and M show significant
increase. Thereafter, increase in pressure up to 10kbar has no noticeable
effect on the magnetization
Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface
Although the creation of spin polarization in various non-magnetic media via
electrical spin injection from a ferromagnetic tunnel contact has been
demonstrated, much of the basic behavior is heavily debated. It is reported
here for semiconductor/Al2O3/ferromagnet tunnel structures based on Si or GaAs
that local magnetostatic fields arising from interface roughness dramatically
alter and even dominate the accumulation and dynamics of spins in the
semiconductor. Spin precession in the inhomogeneous magnetic fields is shown to
reduce the spin accumulation up to tenfold, and causes it to be inhomogeneous
and non-collinear with the injector magnetization. The inverted Hanle effect
serves as experimental signature. This interaction needs to be taken into
account in the analysis of experimental data, particularly in extracting the
spin lifetime and its variation with different parameters (temperature, doping
concentration). It produces a broadening of the standard Hanle curve and
thereby an apparent reduction of the spin lifetime. For heavily doped n-type Si
at room temperature it is shown that the spin lifetime is larger than
previously determined, and a new lower bound of 0.29 ns is obtained. The
results are expected to be general and occur for spins near a magnetic
interface not only in semiconductors but also in metals, organic and
carbon-based materials including graphene, and in various spintronic device
structures.Comment: Final version, with text restructured and appendices added (25 pages,
9 figures). To appear in Phys. Rev.
Thermal and Mass Diffusion on Unsteady Hydromagnetic Flow with Heat Flux and Accelerated Boundary Motion
Hall Effect with Simultaneous Thermal and Mass Diffusion on Unsteady Hydromagnetic Flow Near an Accelerated Vertical Plate
Recommended from our members
Computational-Mechanism Design: A Call to Arms
Game theory has developed several powerful tools for analyzing decision making in systems composed of multiple autonomous actors. Given this fact, AI practitioners would like to exploit these tools when building software systems containing multiple agents. However, to do this, the tools must be tailored to computational settings. To this end, the authors provide an overview of computational-mechanism design, which deals with the application of economic principles in computer systems design. Moreover, because many complex systems are inherently distributed, they also present initial results from the relatively new field of distributed-computational-mechanism design and outline the key challenges involved in making the ideas practicable.Engineering and Applied Science
- …
