4,838 research outputs found
Pressure Shifts in High-Precision Hydrogen Spectroscopy: I. Long-Range Atom-Atom and Atom-Molecule Interactions
We study the theoretical foundations for the pressure shifts in
high-precision atomic beam spectrosopy of hydrogen, with a particular emphasis
on transitions involving higher excited P states. In particular, the long-range
interaction of an excited hydrogen atom in a 4P state with a ground-state and
metastable hydrogen atom is studied, with a full resolution of the hyperfine
structure. It is found that the full inclusion of the 4P_1/2 and 4P_3/2
manifolds becomes necessary in order to obtain reliable theoretical
predictions, because the 1S ground state hyperfine frequency is commensurate
with the 4P fine-structure splitting. An even more complex problem is
encountered in the case of the 4P-2S interaction, where the inclusion of
quasi-degenerate 4S-2P_1/2 state becomes necessary in view of the dipole
couplings induced by the van der Waals Hamiltonian. Matrices of dimension up to
40 have to be treated despite all efforts to reduce the problem to irreducible
submanifolds within the quasi-degenerate basis. We focus on the
phenomenologically important second-order van der Waals shifts, proportional to
1/R^6 where R is the interatomic distance, and obtain results with full
resolution of the hyperfine structure. The magnitude of van der Waals
coefficients for hydrogen atom-atom collisions involving excited P states is
drastically enhanced due to energetic quasi-degeneracy; we find no such
enhancement for atom-molecule collisions involving atomic nP states, even if
the complex molecular spectrum involving ro-vibrational levels requires a
deeper analysis.Comment: 32 pages; 2 figures; this is part 1 of a series of two papers; part 1
carries article number 075005, while part 2 carries article number 075006 in
the journal (online journal version has been rectified). arXiv admin note:
text overlap with arXiv:1711.1003
Distribution, morphology, and genetic affinities of dwarf embedded Fucus populations from the Northwest Atlantic Ocean
Dwarf embedded Fucus populations in the Northwest Atlantic Ocean are restricted to the upper intertidal zone in sandy salt marsh environments; they lack holdfasts and are from attached parental populations of F. spiralis or F. spiralis x F. vesiculosus hybrids after breakage and entanglement with halophytic marsh grasses. Dwarf forms are dichotomously branched, flat, and have a mean overall length and width of 20.3 and 1.3 mm, respectively. Thus, they are longer than Irish (mean 9.3 mm) and Alaskan (mean 15.0 mm) populations identified as F cottonii. Reciprocal transplants of different Fucus taxa in a Maine salt marsh confirm that F spiralis can become transformed into dwarf embedded thalli within the high intertidal zone, while the latter can grow into F. s. ecad lutarius within the mid intertidal zone. Thus, vertical transplantation can modify fucoid morphology and result in varying ecads. Microsatellite markers indicate that attached F spiralis and F vesiculosus are genetically distinct, while dwarf forms may arise via hybridization between the two taxa. The ratio of intermediate to species-specific-genotypes decreased with larger thalli. Also, F s. ecad lutarius consists of a mixture of intermediate and pure genotypes, while dwarf thalli show a greater frequency of hybrids
The Asian red seaweed Grateloupia turuturu (Rhodophyta) invades the Gulf of Maine
We report the invasion of the Gulf of Maine, in the northwest Atlantic Ocean, by the largest red seaweed in the world, the Asian Grateloupia turuturu. First detected in 1994 in Narragansett Bay, Rhode Island, south of Cape Cod, this alga had expanded its range in the following years only over to Long Island and into Long Island Sound. In July 2007 we found Grateloupia in the Cape Cod Canal and as far north (east) as Boston, Massachusetts, establishing its presence in the Gulf of Maine. Grateloupia can be invasive and may be capable of disrupting low intertidal and shallow subtidal seaweeds. The plant\u27s broad physiological tolerances suggest that it will be able to expand possibly as far north as the Bay of Fundy. We predict its continued spread in North America and around the world, noting that its arrival in the major international port of Boston may now launch G. turuturu on to new global shipping corridors
Full transmission through perfect-conductor subwavelength hole arrays
Light transmission through 2D subwavelength hole arrays in perfect-conductor
films is shown to be complete (100%) at some resonant wavelengths even for
arbitrarily narrow holes. Conversely, the reflection on a 2D planar array of
non-absorbing scatterers is shown to be complete at some wavelengths regardless
how weak the scatterers are. These results are proven analytically and
corroborated by rigorous numerical solution of Maxwell's equations. This work
supports the central role played by dynamical diffraction during light
transmission through subwavelength hole arrays and it provides a systematics to
analyze more complex geometries and many of the features observed in connection
with transmission through hole arrays.Comment: 5 pages, 4 figure
Micrometeorological processes driving snow ablation in an Alpine catchment
Mountain snow covers typically become patchy over the course of a melting season. The snow pattern during melt is mainly governed by the end of winter snow depth distribution and the local energy balance. The objective of this study is to investigate micrometeorological processes driving snow ablation in an Alpine catchment. For this purpose we combine a meteorological model (ARPS) with a fully distributed energy balance model (Alpine3D). Turbulent fluxes above melting snow are further investigated by using data from eddy-correlation systems. We compare modelled snow ablation to measured ablation rates as obtained from a series of Terrestrial Laser Scanning campaigns covering a complete ablation season. The measured ablation rates indicate that the advection of sensible heat causes locally increased ablation rates at the upwind edges of the snow patches. The effect, however, appears to be active over rather short distances except for very strong wind conditions. Neglecting this effect, the model is able to capture the mean ablation rates for early ablation periods but strongly overestimates snow ablation once the fraction of snow coverage is below a critical value. While radiation dominates snow ablation early in the season, the turbulent flux contribution becomes important late in the season. Simulation results indicate that the air temperatures appear to overestimate the local air temperature above snow patches once the snow coverage is below a critical value. Measured turbulent fluxes support these findings by suggesting a stable internal boundary layer close to the snow surface causing a strong decrease of the sensible heat flux towards the snow cover. Thus, the existence of a stable internal boundary layer above a patchy snow cover exerts a dominant control on the timing and magnitude of snow ablation for patchy snow covers.<br/
Quantum state tomography of slow and stored light
Quantum information can be transferred from a beam of light to a cloud of atoms and controllably released at a later time. These quantum memory devices are fundamental to applications in quantum information science, quantum computing, and quantum communication. We propose a technique for measuring the quantum state of light that has been stored and released from a quantum memory system. This technique does not require careful mode matching can in fact be used to optimize the measured field mode without a priori knowledge of the stored light
Probing the interaction between solid benzene and water using vacuum ultraviolet and infrared spectroscopy
We present results of a combined vacuum ultravioloet (VUV) and infrared (IR) photoabsorption study of amorphous benzene:water mixtures and layers to investigate the benzene-water interaction in the solid phase. UV spectra of 1:1, 1:10 and 1:100 benzene:water mixtures at 24 K reveal a concentration dependent shift in the energies of the 1B2u, 1B1u and 1E1u electronic states of benzene. All the electronic bands blueshift from pure amorphous benzene towards gas phase energies with increasing water concentration. IR results reveal a strong dOH-π benzene-water interaction via the dangling OH stretch of water with the delocalised π system of the benzene molecule. Although this interaction influences the electronic states of benzene with the benzenewater interaction causing a redshift in the electronic states from that of the free benzene molecule, the benzene-benzene interaction has a more significant effect on the electronic states of benzene. VUV spectra of benzene and water layers show evidence of non-wetting between benzene and water, characterised by Rayleigh scattering tails at wavelengths greater than 220 nm. Our results also show evidence of benzene-water interaction at the benzene-water interface affecting both the benzene and the water electronic states. Annealing the mixtures and layers of benzene and water show that benzene remains trapped within in/under water ice until water desorption near 160 K. These first systematic studies of binary amorphous mixtures in the VUV, supported with complementary IR studies, provide a deeper insight into the influence of intermolecular interactions on intramolecular electronic states with significant implications for our understanding of photochemical processes in more realistic astrochemical environments
- …
