9,181 research outputs found
Role of interband scattering in neutron irradiated MgB thin films by Scanning Tunneling Spectroscopy measurements
A series of MgB thin films systematically disordered by neutron
irradiation have been studied by Scanning Tunneling Spectroscopy. The c-axis
orientation of the films allowed a reliable determination of local density of
state of the band. With increasing disorder, the conductance peak moves
towards higher voltages and becomes lower and broader, indicating a monotonic
increase of the gap and of the broadening parameter. These results are
discussed in the frame of two-band superconductivity.Comment: The text will be submitted in Latex format, and the corresponding pdf
file should take 6 pages. There are 5 figures (eps files submitted) and 1
tabl
A new generation photodetector for astroparticle physics: the VSiPMT
The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an innovative design we
proposed for a revolutionary photon detector. The main idea is to replace the
classical dynode chain of a PMT with a SiPM (G-APD), the latter acting as an
electron detector and amplifier. The aim is to match the large sensitive area
of a photocathode with the performance of the SiPM technology. The VSiPMT has
many attractive features. In particular, a low power consumption and an
excellent photon counting capability. To prove the feasibility of the idea we
first tested the performance of a special non-windowed SiPM by Hamamatsu (MPPC)
as electron detector and current amplifier. Thanks to this result Hamamatsu
realized two VSiPMT industrial prototypes. In this work, we present the results
of a full characterization of the VSiPMT prototype
High quality MgB2 thin films in-situ grown by dc magnetron sputtering
Thin films of the recently discovered magnesium diboride (MgB2) intermetalic
superconducting compound have been grown using a magnetron sputtering
deposition technique followed by in-situ annealing at 830 C. High quality films
were obtained on both sapphire and MgO substrates. The best films showed
maximum Tc = 35 K (onset), a transition width of 0.5 K, a residual resistivity
ratio up to 1.6, a low temperature critical current density Jc > 1 MA/cm2 and
anisotropic critical field with gamma = 2.5 close to the values obtained for
single crystals. The preparation technique can be easily scaled to produce
large area in-situ films.Comment: 7 pages, 4 figure
Nanoscale modulation of the density of states at the conducting interface between LaAlO3 and SrTiO3 band insulators
The appearance of high-mobility electrons at the LaAlO3/SrTiO3 interface has raised strong interest in the material science community and a lively debate on the origin of the phenomenon. A possible explanation is an electronic reconstruction, realizing a transfer of electrons to SrTiO3 at the interface, thereby avoiding the build-up of excessive Coulomb energy as described by the "polarization catastrophe" associated with the alternating polar layers of the LaAlO3 film. Theoretical models predict that electrons are transferred into titanium 3d(xy) interface states and, in the presence of strong correlations, generate a charge and orbital order. Here we provide experimental evidence that at room temperature the local density of states of the LaAlO3/SrTiO3 conducting interface is modulated at the nanoscale in a short-range quasiperiodic pattern, which is consistent with the appearance of an orbital (short-range) order. This result, together with the splitting of the 3d states, confirms that an electronic reconstruction drives the functional properties of the LaAlO3/SrTiO3 oxide interface. The short-range superstructure does not fully agree with the theoretical predictions. Thus, further experimental and theoretical investigations are required to understand the electronic properties of the 2D electron system realised at the LaAlO3/SrTiO3 interface
Scanning Tunneling Spectroscopy study of paramagnetic superconducting β’’-ET4[(H3O)Fe(C2O4)3]•C6H5Br crystals
Scanning tunnelling spectroscopy (STS) and microscopy (STM) were performed on the paramagnetic molecular superconductor beta''-ET4[(H3O)Fe(C2O4)(3)]C6H5Br. Under ambient pressure, this compound is located near the boundary separating superconducting and insulating phases of the phase diagram. In spite of a strongly reduced critical temperature T-c (T-c = 4.0 K at the onset, zero resistance at T-c = 0.5 K), the low temperature STS spectra taken in the superconducting regions show strong similarities with the higher T-c ET kappa-derivatives series. We exploited different models for the density of states (DOS), with conventional and unconventional order parameters to take into account the role played by possible magnetic and non-magnetic disorder in the superconducting order parameter. The values of the superconducting order parameter obtained by the fitting procedure are close to the ones obtained on more metallic and higher T-c organic crystals and far above the BCS values, suggesting an intrinsic role of disorder in the superconductivity of organic superconductors and a further confirmation of the non-conventional superconductivity in such compounds
Effect of magnetic impurities on the vortex lattice properties in NbSe2 single crystals
We report a pronounced peak effect in the magnetization of CoxNbSe2 single crystals with critical temperatures T-c ranging between 7.1 and 5.0 K, and MnxNbSe2 single crystals with critical temperatures down to 3.4 K. We correlate the peak effect in magnetization with the structure of the vortex lattice across the peak-effect region using scanning-tunneling microscopy. Magnetization measurements show that the amplitude of the peak effect in the case of CoxNbSe2 exhibits a nonmonotonic behavior as a function of the Co content, reaching a maximum for concentration of Co of about 0.4 at. % (corresponding to a T-c of 5.7 K) and after that gradually decreasing in amplitude with the increase in the Co content. The normalized value of the peak position H-p/H-c2 has weak dependence on Co concentration. In the case of MnxNbSe2 the features of the peak effect as a function of the Mn content are different and they can be understood in terms of strong pinning
Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network
We have studied the performance of a new algorithm for electron/pion
separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion
films. The software for separation consists of two parts: a shower
reconstruction algorithm and a Neural Network that assigns to each
reconstructed shower the probability to be an electron or a pion. The
performance has been studied for the ECC of the OPERA experiment [1].
The separation algorithm has been optimized by using a detailed Monte
Carlo simulation of the ECC and tested on real data taken at CERN (pion beams)
and at DESY (electron beams). The algorithm allows to achieve a 90% electron
identification efficiency with a pion misidentification smaller than 1% for
energies higher than 2 GeV
Measurement of the production of charged pions by protons on a tantalum target
A measurement of the double-differential cross-section for the production of
charged pions in proton--tantalum collisions emitted at large angles from the
incoming beam direction is presented. The data were taken in 2002 with the HARP
detector in the T9 beam line of the CERN PS. The pions were produced by proton
beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target
with a thickness of 5% of a nuclear interaction length. The angular and
momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and
0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design
of a neutrino factory. The produced particles were detected using a
small-radius cylindrical time projection chamber (TPC) placed in a solenoidal
magnet. Track recognition, momentum determination and particle identification
were all performed based on the measurements made with the TPC. An elaborate
system of detectors in the beam line ensured the identification of the incident
particles. Results are shown for the double-differential cross-sections
at four incident
proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the
pion yields within the acceptance of typical neutrino factory designs are shown
as a function of beam momentum. The measurement of these yields within a single
experiment eliminates most systematic errors in the comparison between rates at
different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys.
J.
Novel analgesic/anti-inflammatory agents: 1,5-diarylpyrrole nitrooxyalkyl ethers and related compounds as cyclooxygenase-2 inhibiting nitric oxide donors
A series of 3-substituted 1,5-diarylpyrroles bearing a nitrooxyalkyl side chain linked to different spacers were designed. New classes of pyrrole-derived nitrooxyalkyl inverse esters, carbonates, and ethers (7-10) as COX-2 selective inhibitors and NO donors were synthesized and are herein reported. By taking into account the metabolic conversion of nitrooxyalkyl ethers (9, 10) into corresponding alcohols, derivatives 17 and 18 were also studied. Nitrooxy derivatives showed NO-dependent vasorelaxing properties, while most of the compounds proved to be very potent and selective COX-2 inhibitors in in vitro experimental models. Further in vivo studies on compounds 9a,c and 17a highlighted good anti-inflammatory and antinociceptive activities. Compound 9c was able to inhibit glycosaminoglycan (GAG) release induced by interleukin-1β (IL-1β), showing cartilage protective properties. Finally, molecular modeling and (1)H- and (13)C-NMR studies performed on compounds 6c,d, 9c, and 10b allowed the right conformation of nitrooxyalkyl ester and ether side chain of these molecules within the COX-2 active site to be assessed
- …
