744 research outputs found
The Immitigable Nature of Assembly Bias: The Impact of Halo Definition on Assembly Bias
Dark matter halo clustering depends not only on halo mass, but also on other
properties such as concentration and shape. This phenomenon is known broadly as
assembly bias. We explore the dependence of assembly bias on halo definition,
parametrized by spherical overdensity parameter, . We summarize the
strength of concentration-, shape-, and spin-dependent halo clustering as a
function of halo mass and halo definition. Concentration-dependent clustering
depends strongly on mass at all . For conventional halo definitions
(), concentration-dependent clustering
at low mass is driven by a population of haloes that is altered through
interactions with neighbouring haloes. Concentration-dependent clustering can
be greatly reduced through a mass-dependent halo definition with for haloes with . Smaller implies larger radii and
mitigates assembly bias at low mass by subsuming altered, so-called backsplash
haloes into now larger host haloes. At higher masses () larger overdensities, , are necessary. Shape- and spin-dependent clustering are
significant for all halo definitions that we explore and exhibit a relatively
weaker mass dependence. Generally, both the strength and the sense of assembly
bias depend on halo definition, varying significantly even among common
definitions. We identify no halo definition that mitigates all manifestations
of assembly bias. A halo definition that mitigates assembly bias based on one
halo property (e.g., concentration) must be mass dependent. The halo
definitions that best mitigate concentration-dependent halo clustering do not
coincide with the expected average splashback radii at fixed halo mass.Comment: 19 pages, 13 figures. Updated to published version. Main result
summarized in Figure 1
Effects of nanoparticles on murine macrophages
Metallic nanoparticles are more and more widely used in an increasing number
of applications. Consequently, they are more and more present in the
environment, and the risk that they may represent for human health must be
evaluated. This requires to increase our knowledge of the cellular responses to
nanoparticles. In this context, macrophages appear as an attractive system.
They play a major role in eliminating foreign matter, e.g. pathogens or
infectious agents, by phagocytosis and inflammatory responses, and are thus
highly likely to react to nanoparticles. We have decided to study their
responses to nanoparticles by a combination of classical and wide-scope
approaches such as proteomics. The long term goal of this study is the better
understanding of the responses of macrophages to nanoparticles, and thus to
help to assess their possible impact on human health. We chose as a model
system bone marrow-derived macrophages and studied the effect of commonly used
nanoparticles such as TiO2 and Cu. Classical responses of macrophage were
characterized and proteomic approaches based on 2D gels of whole cell extracts
were used. Preliminary proteomic data resulting from whole cell extracts showed
different effects for TiO2-NPs and Cu-NPs. Modifications of the expression of
several proteins involved in different pathways such as, for example, signal
transduction, endosome-lysosome pathway, Krebs cycle, oxidative stress response
have been underscored. These first results validate our proteomics approach and
open a new wide field of investigation for NPs impact on macrophagesComment: Nanosafe2010: International Conference on Safe Production and Use of
Nanomaterials 16-18 November 2010, Grenoble, France, Grenoble : France (2010
Assuring the Public Interest in Equal Employment Opportunity after \u3ci\u3eFirefighters Local 1784 v. Stotts\u3c/i\u3e
Assuring the Public Interest in Equal Employment Opportunity after \u3ci\u3eFirefighters Local 1784 v. Stotts\u3c/i\u3e
Charges and fluxes in Maxwell theory on compact manifolds with boundary
We investigate the charges and fluxes that can occur in higher-order Abelian
gauge theories defined on compact space-time manifolds with boundary. The
boundary is necessary to supply a destination to the electric lines of force
emanating from brane sources, thus allowing non-zero net electric charges, but
it also introduces new types of electric and magnetic flux. The resulting
structure of currents, charges, and fluxes is studied and expressed in the
language of relative homology and de Rham cohomology and the corresponding
abelian groups. These can be organised in terms of a pair of exact sequences
related by the Poincar\'e-Lefschetz isomorphism and by a weaker flip symmetry
exchanging the ends of the sequences. It is shown how all this structure is
brought into play by the imposition of the appropriately generalised Maxwell's
equations. The requirement that these equations be integrable restricts the
world-volume of a permitted brane (assumed closed) to be homologous to a cycle
on the boundary of space-time. All electric charges and magnetic fluxes are
quantised and satisfy the Dirac quantisation condition. But through some
boundary cycles there may be unquantised electric fluxes associated with
quantised magnetic fluxes and so dyonic in nature.Comment: 28 pages, plain Te
Migrations and habitat use of the smooth hammerhead shark (Sphyrna zygaena) in the Atlantic Ocean
The smooth hammerhead shark, Sphyrna zygaena, is a cosmopolitan semipelagic shark captured as bycatch in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. From 2012 to 2016, eight smooth hammerheads were tagged with Pop-up Satellite Archival Tags in the inter-tropical region of the Northeast Atlantic Ocean, with successful transmissions received from seven tags (total of 319 tracking days). Results confirmed the smooth hammerhead is a highly mobile species, as the longest migration ever documented for this species (> 6600 km) was recorded. An absence of a diel vertical movement behavior was noted, with the sharks spending most of their time at surface waters (0-50 m) above 23 degrees C. The operating depth of the pelagic long-line gear was measured with Minilog Temperature and Depth Recorders, and the overlap with the species vertical distribution was calculated. The overlap is taking place mainly during the night and is higher for juveniles (similar to 40% of overlap time). The novel information presented can now be used to contribute to the provision of sustainable management tools and serve as input for Ecological Risk Assessments for smooth hammerheads caught in Atlantic pelagic longline fisheries.Oceanario de Lisboa through Project "SHARK-TAG: Migrations and habitat use of the smooth hammerhead shark in the Atlantic Ocean"; Investigador-FCT from the Portuguese Foundation for Science and Technology (FCT, Fundacao para a Ciencia e Tecnologia) [Ref: IF/00253/2014]; EU European Social Fund; Programa Operacional Potencial Human
Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1
DNA double-strand breaks (DSBs) are repaired by nonhomologous end joining (NHEJ) or homologous recombination (HR). The C terminal binding protein–interacting protein (CtIP) is phosphorylated in G2 by cyclin-dependent kinases to initiate resection and promote HR. CtIP also exerts functions during NHEJ, although the mechanism phosphorylating CtIP in G1 is unknown. In this paper, we identify Plk3 (Polo-like kinase 3) as a novel DSB response factor that phosphorylates CtIP in G1 in a damage-inducible manner and impacts on various cellular processes in G1. First, Plk3 and CtIP enhance the formation of ionizing radiation-induced translocations; second, they promote large-scale genomic deletions from restriction enzyme-induced DSBs; third, they are required for resection and repair of complex DSBs; and finally, they regulate alternative NHEJ processes in Ku−/− mutants. We show that mutating CtIP at S327 or T847 to nonphosphorylatable alanine phenocopies Plk3 or CtIP loss. Plk3 binds to CtIP phosphorylated at S327 via its Polo box domains, which is necessary for robust damage-induced CtIP phosphorylation at S327 and subsequent CtIP phosphorylation at T847
The Halo Mass of Optically Luminous Quasars at z ,F≈ ,F1-2 Measured via Gravitational Deflection of the Cosmic Microwave Background
© 2019. The American Astronomical Society. All rights reserved.We measure the average deflection of cosmic microwave background photons by quasars at 〈Z〉= 1.7. Our sample is selected from the Sloan Digital Sky Survey to cover the redshift range 0.9 ≤z≤2.2 with absolute i-band magnitudes of M i ≤-24 (K-corrected to z = 2). A stack of nearly 200,000 targets reveals an 8δ detection of Planck's estimate of the lensing convergence toward the quasars. We fit the signal with a model comprising a Navarro-Frenk-White density profile and a two-halo term accounting for correlated large-scale structure, which dominates the observed signal. The best-fitting model is described by an average halo mass log 10 (M h h -1 M)12.6 ±0.2 = and linear bias b=2.7±0.3 at 〈Z 〉= 1.7, in excellent agreement with clustering studies. We also report a hint, at a 90% confidence level, of a correlation between the convergence amplitude and luminosity, indicating that quasars brighter than Mi≲ -26 reside in halos of typical mass M h ≈ 10 13 h -1 M, scaling roughly as M h ∞ L opt 3/4 at M i ≲-24 mag, in good agreement with physically motivated quasar demography models. Although we acknowledge that this luminosity dependence is a marginal result, the observed Mh-L opt relationship could be interpreted as a reflection of the cutoff in the distribution of black hole accretion rates toward high Eddington ratios: the weak trend of Mh with Lopt observed at low luminosity becomes stronger for the most powerful quasars, which tend to be accreting close to the Eddington limit.Peer reviewedFinal Accepted Versio
- …
