11,697 research outputs found

    Nonextensive aspects of self-organized scale-free gas-like networks

    Full text link
    We explore the possibility to interpret as a 'gas' the dynamical self-organized scale-free network recently introduced by Kim et al (2005). The role of 'momentum' of individual nodes is played by the degree of the node, the 'configuration space' (metric defining distance between nodes) being determined by the dynamically evolving adjacency matrix. In a constant-size network process, 'inelastic' interactions occur between pairs of nodes, which are realized by the merger of a pair of two nodes into one. The resulting node possesses the union of all links of the previously separate nodes. We consider chemostat conditions, i.e., for each merger there will be a newly created node which is then linked to the existing network randomly. We also introduce an interaction 'potential' (node-merging probability) which decays with distance d_ij as 1/d_ij^alpha; alpha >= 0). We numerically exhibit that this system exhibits nonextensive statistics in the degree distribution, and calculate how the entropic index q depends on alpha. The particular cases alpha=0 and alpha to infinity recover the two models introduced by Kim et al.Comment: 7 pages, 5 figure

    Non-Equilibrium Surface Tension of the Vapour-Liquid Interface of Active Lennard-Jones Particles

    Full text link
    We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian Dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential component of the pressure tensor, and show that the surface tension as a function of strength of particle attractions is well-fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem, and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.Comment: 12 pages, 5 figures (Corrected typos and References

    Inference of the Russian drug community from one of the largest social networks in the Russian Federation

    Full text link
    The criminal nature of narcotics complicates the direct assessment of a drug community, while having a good understanding of the type of people drawn or currently using drugs is vital for finding effective intervening strategies. Especially for the Russian Federation this is of immediate concern given the dramatic increase it has seen in drug abuse since the fall of the Soviet Union in the early nineties. Using unique data from the Russian social network 'LiveJournal' with over 39 million registered users worldwide, we were able for the first time to identify the on-line drug community by context sensitive text mining of the users' blogs using a dictionary of known drug-related official and 'slang' terminology. By comparing the interests of the users that most actively spread information on narcotics over the network with the interests of the individuals outside the on-line drug community, we found that the 'average' drug user in the Russian Federation is generally mostly interested in topics such as Russian rock, non-traditional medicine, UFOs, Buddhism, yoga and the occult. We identify three distinct scale-free sub-networks of users which can be uniquely classified as being either 'infectious', 'susceptible' or 'immune'.Comment: 12 pages, 11 figure

    Preventing Advanced Persistent Threats in Complex Control Networks

    Get PDF
    An Advanced Persistent Threat (APT) is an emerging attack against Industrial Control and Automation Systems, that is executed over a long period of time and is difficult to detect. In this context, graph theory can be applied to model the interaction among nodes and the complex attacks affecting them, as well as to design recovery techniques that ensure the survivability of the network. Accordingly, we leverage a decision model to study how a set of hierarchically selected nodes can collaborate to detect an APT within the network, concerning the presence of changes in its topology. Moreover, we implement a response service based on redundant links that dynamically uses a secret sharing scheme and applies a flexible routing protocol depending on the severity of the attack. The ultimate goal is twofold: ensuring the reachability between nodes despite the changes and preventing the path followed by messages from being discovered.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Improving Dental Experiences by Using Virtual Reality Distraction: A Simulation Study

    Get PDF
    Dental anxiety creates significant problems for both patients and the dental profession. Some distraction interventions are already used by healthcare professionals to help patients cope with unpleasant procedures. The present study is novel because it a) builds on evidence that natural scenery is beneficial for patients, and b) uses a Virtual Reality (VR) representation of nature to distract participants. Extending previous work that has investigated pain and anxiety during treatment, c) we also consider the longer term effects in terms of more positive memories of the treatment, building on a cognitive theory of memory (Elaborated Intrusions). Participants (n = 69) took part in a simulated dental experience and were randomly assigned to one of three VR conditions (active vs. passive vs. control). In addition, participants were distinguished into high and low dentally anxious according to a median split resulting in a 362 between-subjects design. VR distraction in a simulated dental context affected memories a week later. The VR distraction had effects not only on concurrent experiences, such as perceived control, but longitudinally upon the vividness of memories after the dental experience had ended. Participants with higher dental anxiety (for whom the dental procedures were presumably more aversive) showed a greater reduction in memory vividness than lower dental-anxiety participants. This study thus suggests that VR distractions can be considered as a relevant intervention for cycles of care in which people’s previous experiences affect their behaviour for future events

    Speeding up shortest path algorithms

    Full text link
    Given an arbitrary, non-negatively weighted, directed graph G=(V,E)G=(V,E) we present an algorithm that computes all pairs shortest paths in time O(mn+mlgn+nTψ(m,n))\mathcal{O}(m^* n + m \lg n + nT_\psi(m^*, n)), where mm^* is the number of different edges contained in shortest paths and Tψ(m,n)T_\psi(m^*, n) is a running time of an algorithm to solve a single-source shortest path problem (SSSP). This is a substantial improvement over a trivial nn times application of ψ\psi that runs in O(nTψ(m,n))\mathcal{O}(nT_\psi(m,n)). In our algorithm we use ψ\psi as a black box and hence any improvement on ψ\psi results also in improvement of our algorithm. Furthermore, a combination of our method, Johnson's reweighting technique and topological sorting results in an O(mn+mlgn)\mathcal{O}(m^*n + m \lg n) all-pairs shortest path algorithm for arbitrarily-weighted directed acyclic graphs. In addition, we also point out a connection between the complexity of a certain sorting problem defined on shortest paths and SSSP.Comment: 10 page

    Crystallization in suspensions of hard spheres: A Monte Carlo and Molecular Dynamics simulation study

    Get PDF
    The crystallization of a metastable melt is one of the most important non equilibrium phenomena in condensed matter physics, and hard sphere colloidal model systems have been used for several decades to investigate this process by experimental observation and computer simulation. Nevertheless, there is still an unexplained discrepancy between simulation data and experimental nucleation rate densities. In this paper we examine the nucleation process in hard spheres using molecular dynamics and Monte Carlo simulation. We show that the crystallization process is mediated by precursors of low orientational bond-order and that our simulation data fairly match the experimental data sets
    corecore