45 research outputs found

    Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation

    Get PDF
    Wear particles from automotive friction brake pads of various sizes, morphology, and chemical composition are significant contributors towards particulate matter. Knowledge concerning the potential adverse effects following inhalation exposure to brake wear debris is limited. Our aim was, therefore, to generate brake wear particles released from commercial low-metallic and non-asbestos organic automotive brake pads used in mid-size passenger cars by a full-scale brake dynamometer with an environmental chamber simulating urban driving and to deduce their potential hazard in vitro. The collected fractions were analysed using scanning electron microscopy via energy-dispersive X-ray spectroscopy (SEM-EDS) and Raman microspectroscopy. The biological impact of the samples was investigated using a human 3D multicellular model consisting of human epithelial cells (A549) and human primary immune cells (macrophages and dendritic cells) mimicking the human epithelial tissue barrier. The viability, morphology, oxidative stress, and (pro-)inflammatory response of the cells were assessed following 24 h exposure to similar to 12, similar to 24, and similar to 48 A mu g/cm(2) of non-airborne samples and to similar to 3.7 A mu g/cm(2) of different brake wear size fractions (2-4, 1-2, and 0.25-1 A mu m) applying a pseudo-air-liquid interface approach. Brake wear debris with low-metallic formula does not induce any adverse biological effects to the in vitro lung multicellular model. Brake wear particles from non-asbestos organic formulated pads, however, induced increased (pro-)inflammatory mediator release from the same in vitro system. The latter finding can be attributed to the different particle compositions, specifically the presence of anatase.Web of Science9272351233

    Assessment of a panel of interleukin-8 reporter lung epithelial cell lines to monitor the pro-inflammatory response following zinc oxide nanoparticle exposure under different cell culture conditions

    Get PDF
    Stably transfected lung epithelial reporter cell lines pose an advantageous alternative to replace complex experimental techniques to monitor the pro-inflammatory response following nanoparticle (NP) exposure. Previously, reporter cell lines have been used under submerged culture conditions, however, their potential usefulness in combination with air-liquid interface (ALI) exposures is currently unknown. Therefore, the aim of the present study was to compare a panel of interleukin-8 promoter (pIL8)-reporter cell lines (i.e. green or red fluorescent protein (GFP, RFP), and luciferase (Luc)), originating from A549 lung epithelial type II-like cells cells, following NPs exposure under both submerged and ALI conditions. All cell lines were exposed to zinc oxide (ZnO) NPs at 0.6 and 6.2 μg/cm 2 for 3 and 16 hours under both submerged and ALI conditions. Following physicochemical characterization, the cytotoxic profile of the ZnO-NPs was determined for each exposure scenario. Expression of IL-8 from all cell types was analyzed at the promoter level and compared to the mRNA (qRT-PCR) and protein level (ELISA). In summary, each reporter cell line detected acute pro-inflammatory effects following ZnO exposure under each condition tested. The pIL8-Luc cell line was the most sensitive in terms of reporter signal strength and onset velocity following TNF-α treatment. Both pIL8-GFP and pIL8-RFP also showed a marked signal induction in response to TNF-α, although only after 16 hrs. In terms of ZnO-NP-induced cytotoxicity pIL8-RFP cells were the most affected, whilst the pIL8-Luc were found the least responsive. In conclusion, the use of fluorescence-based reporter cell lines can provide a useful tool in screening the pro-inflammatory response following NP exposure in both submerged and ALI cell cultures. The online version of this article (doi:10.1186/s12989-015-0104-6) contains supplementary material, which is available to authorized users

    Physical and Mechanical Properties of Serpentinized Ultrabasic Rocks in NW Turkey

    Full text link

    Geographic and temporal variation in the consumption of bats by European barn owls

    Get PDF
    Capsule We report a review of the occurrence of bats in the Barn Owl diet Tyto alba in Europe. Based on 802 studies reporting 4.02 million prey items identified in pellets, 4949 were bats (0.12%). We found that bat predation decreased during the last 150 years, is more frequent on islands than mainland, and is higher in eastern than western Europe and in southern than northern Europe. Although Barn Owls usually capture bats opportunistically, they can sometimes specialize on them

    Changes in physical activity behavior and development of cardiovascular risk in children

    Full text link
    Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): Swiss National Foundation Background Prevention of cardiovascular (CV) disease should start early in life. The study aimed to investigate the association of changes in physical activity, sedentary behavior and cardiorespiratory fitness (CRF) with development of body mass index (BMI), blood pressure (BP) and retinal microvascular health in children over four years. Methods In 2014, 391 children aged 6-8 years were screened, and thereof 262 children were reexamined after four years following standardized protocols. Retinal arteriolar (CRAE) and venular diameters were measured by a retinal vessel analyzer. CRF was objectively assessed by a 20m shuttle run, physical activity and sedentary behavior by use of a questionnaire. Results Children who achieved higher CRF levels reduced their BMI (β [95% CI] -0.35 [-0.46 to -0.25] kg/m2 per stage, P ≤ 0.001) and thereby developed wider CRAE (β [95% CI] 0.25 [0.24 to 0.48] µm per stage, P = 0.03) at follow-up. Moreover, children with elevated or high systolic BP at baseline, but lower levels of sedentary behavior during the observation period, had wider CRAE at follow-up (β [95% CI] -0.37 [-0.66 to -0.08] µm per 10 min/d, P = 0.013). Conclusion An increase of CRF over four years was associated with a reduced BMI and consequently wider retinal arterioles at follow-up. In children with elevated or high systolic BP, a reduction of sedentary behavior by merely 10 min per day significantly improved retinal microvascular health as a primary prevention strategy to promote childhood health and combat development of manifest CV disease later in life. </jats:sec

    An <em>in vitro</em> testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles.

    Get PDF
    Background: The challenge remains to reliably mimic human exposure to high aspect ratio nanoparticles (HARN) via inhalation. Sophisticated, multi-cellular in vitro models are a particular advantageous solution to this issue, especially when considering the need to provide realistic and efficient alternatives to invasive animal experimentation for HARN hazard assessment. By incorporating a systematic test-bed of material characterisation techniques, a specific air-liquid cell exposure system with real-time monitoring of the cell-delivered HARN dose in addition to key biochemical endpoints, here we demonstrate a successful approach towards investigation of the hazard of HARN aerosols in vitro. Methods: Cellulose nanocrystals (CNCs) derived from cotton and tunicates, with differing aspect ratios (~9 and ~80), were employed as model HARN samples. Specifically, well-dispersed and characterised CNC suspensions were aerosolised using an &quot; Air Liquid Interface Cell Exposure System&quot; (ALICE) at realistic, cell-delivered concentrations ranging from 0.14 to 1.57&nbsp;&mu;g/cm2. The biological impact (cytotoxicity, oxidative stress levels and pro-inflammatory effects) of each HARN sample was then assessed using a 3D multi-cellular in vitro model of the human epithelial airway barrier at the air liquid interface (ALI) 24&nbsp;hours post-exposure. Additionally, the testing strategy was validated using both crystalline quartz (DQ12) as a positive particulate control in the ALICE system and long fibre amosite asbestos (LFA) to confirm the susceptibility of the in vitro model to a fibrous insult. Results: A rapid (&le;4&nbsp;min), controlled nebulisation of CNC suspensions enabled a dose-controlled and spatially homogeneous CNC deposition onto cells cultured under ALI conditions. Real-time monitoring of the cell-delivered CNC dose with a quartz crystal microbalance was accomplished. Independent of CNC aspect ratio, no significant cytotoxicity (p &gt; 0.05), induction of oxidative stress, or (pro)-inflammatory responses were observed up to the highest concentration of 1.57&nbsp;&mu;g/cm2. Both DQ12 and LFA elicited a significant (p &lt; 0.05) pro-inflammatory response at sub-lethal concentrations in vitro.Conclusion: In summary, whilst the present study highlights the benign nature of CNCs, it is the advanced technological and mechanistic approach presented that allows for a state of the art testing strategy to realistically and efficiently determine the in vitro hazard concerning inhalation exposure of HARN

    An <em>in vitro</em> testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles.

    Get PDF
    Background: The challenge remains to reliably mimic human exposure to high aspect ratio nanoparticles (HARN) via inhalation. Sophisticated, multi-cellular in vitro models are a particular advantageous solution to this issue, especially when considering the need to provide realistic and efficient alternatives to invasive animal experimentation for HARN hazard assessment. By incorporating a systematic test-bed of material characterisation techniques, a specific air-liquid cell exposure system with real-time monitoring of the cell-delivered HARN dose in addition to key biochemical endpoints, here we demonstrate a successful approach towards investigation of the hazard of HARN aerosols in vitro. Methods: Cellulose nanocrystals (CNCs) derived from cotton and tunicates, with differing aspect ratios (~9 and ~80), were employed as model HARN samples. Specifically, well-dispersed and characterised CNC suspensions were aerosolised using an &quot; Air Liquid Interface Cell Exposure System&quot; (ALICE) at realistic, cell-delivered concentrations ranging from 0.14 to 1.57&nbsp;&mu;g/cm2. The biological impact (cytotoxicity, oxidative stress levels and pro-inflammatory effects) of each HARN sample was then assessed using a 3D multi-cellular in vitro model of the human epithelial airway barrier at the air liquid interface (ALI) 24&nbsp;hours post-exposure. Additionally, the testing strategy was validated using both crystalline quartz (DQ12) as a positive particulate control in the ALICE system and long fibre amosite asbestos (LFA) to confirm the susceptibility of the in vitro model to a fibrous insult. Results: A rapid (&le;4&nbsp;min), controlled nebulisation of CNC suspensions enabled a dose-controlled and spatially homogeneous CNC deposition onto cells cultured under ALI conditions. Real-time monitoring of the cell-delivered CNC dose with a quartz crystal microbalance was accomplished. Independent of CNC aspect ratio, no significant cytotoxicity (p &gt; 0.05), induction of oxidative stress, or (pro)-inflammatory responses were observed up to the highest concentration of 1.57&nbsp;&mu;g/cm2. Both DQ12 and LFA elicited a significant (p &lt; 0.05) pro-inflammatory response at sub-lethal concentrations in vitro.Conclusion: In summary, whilst the present study highlights the benign nature of CNCs, it is the advanced technological and mechanistic approach presented that allows for a state of the art testing strategy to realistically and efficiently determine the in vitro hazard concerning inhalation exposure of HARN
    corecore