219 research outputs found
Species Variation in a Pheromone Complex is Maintained at the Population Level in the Eastern Red-Backed Salamander
Protein pheromones in salamanders of the genus Plethodon have experienced rapid and pervasive directional selection. Variation in mate recognition components, such as the sex-specific pheromones used by plethodontid salamanders, may influence sexual incompatibility and therefore provide a biochemical mechanism for the maintenance of discrete, isolated populations. Recent studies suggest that multiple, genetically distinct lineages of Eastern Red-Backed Salamanders (Plethodon cinereus) are present throughout their broad range. Representative populations from two of these lineages (the Ohio [OH] and Pennsylvania [PA] clades) span the southern shore of Lake Erie in northern Ohio. This distribution pattern creates a unique opportunity to study how phenotypic differences may reinforce population boundaries and possibly lead to speciation. The objectives of this study were to 1) characterize the pheromone profiles of male P. cinereus and 2) determine pheromone variation among populations and between the OH and PA clades. The composition of proteins associated with two known courtship pheromones, Plethodontid Modulating Factor (PMF) and Plethodontid Receptivity Factor (PRF), were compared among eight populations in northern Ohio. Analyses of Similarity (ANOSIM) suggest that both PMF and PRF profiles differ among populations but not between clades. These data suggest that the sex-specific pheromones of P. cinereus in the two clades are not yet different enough to allow reproductive isolation between the two genetic lineages. Although the relative roles of selection and genetic drift are unknown in our populations, specific pheromone isoforms and their effects on mate compatibility should be the focus of future studies aiming to determine mechanisms involved in maintaining population differences
Complex networks for climate model evaluation with application to statistical versus dynamical modeling of South American climate
Acknowledgments: This paper was developed within the scope of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP. Furthermore, this work has been financially supported by the Leibniz Society (project ECONS), and the Stordalen Foundation (JFD). For certain calculations, the software packages pyunicorn (Donges et al. 2013a) and igraph (Csa´rdi and Nepusz 2006) were used. The authors would like to thank Manoel F. Cardoso, Niklas Boers, and the reviewers for helpful comments on the manuscript. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Peer reviewedPostprin
Reaction Sintering of Ca3Co4O9 with BiCuSeO Nanosheets for High-Temperature Thermoelectric Composites
Ceramic composites composed of oxide materials have been synthesized by reaction sintering of Ca3Co4O9 with BiCuSeO nanosheets. In situ x-ray diffraction and thermogravimetric analyses of the compound powders were conducted to understand the phase transformations during heating up to 1173 K. Further thermogravimetric analyses investigated the thermal stability of the composites and the completion of reaction sintering. The microstructure of the formed phases after reaction sintering and the composition of the composites were investigated for varying mixtures. Depending on the amount of BiCuSeO used, the phases present and their composition differed, having a significant impact on the thermoelectric properties. The increase of the electrical conductivity at a simultaneously high Seebeck coefficient resulted in a large power factor of 5.4 μW cm−1 K−2, more than twice that of pristine Ca3Co4O9
Hypericum perforatum L.-Mediated Green Synthesis of Silver Nanoparticles Exhibiting Antioxidant and Anticancer Activities
This contribution focuses on the green synthesis of silver nanoparticles (AgNPs) with a size < 100 nm for potential medical applications by using silver nitrate solution and Hypericum Perforatum L. (St John’s wort) aqueous extracts. Various synthesis methods were used and compared with regard to their yield and quality of obtained AgNPs. Monodisperse spherical nanoparticles were generated with a size of approximately 20 to 50 nm as elucidated by different techniques (SEM, TEM). XRD measurements showed that metallic silver was formed and the particles possess a face-centered cubic structure (fcc). SEM images and FTIR spectra revealed that the AgNPs are covered by a protective surface layer composed of organic components originating from the plant extract. Ultraviolet-visible spectroscopy, dynamic light scattering, and zeta potential were also measured for biologically synthesized AgNPs. A potential mechanism of reducing silver ions to silver metal and protecting it in the nanoscale form has been proposed based on the obtained results. Moreover, the AgNPs prepared in the present study have been shown to exhibit a high antioxidant activity for 2, 2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation, and super oxide anion radical and 2,2-diphenyl-1-picrylhydrazyl. Synthesized AgNPs showed high cytotoxicity by inhibiting cell viability for Hela, Hep G2, and A549 cells
Multiplying Oxygen Permeability of a Ruddlesden-Popper Oxide by Orientation Control via Magnets
Ruddlesden-Popper-type oxides exhibit remarkable chemical stability in comparison to perovskite oxides. However, they display lower oxygen permeability. We present an approach to overcome this trade-off by leveraging the anisotropic properties of Nd2NiO4+δ. Its (a,b)-plane, having oxygen diffusion coefficient and surface exchange coefficient several orders of magnitude higher than its c-axis, can be aligned perpendicular to the gradient of oxygen partial pressure by a magnetic field (0.81 T). A stable and high oxygen flux of 1.40 mL min−1 cm−2 was achieved for at least 120 h at 1223 K by a textured asymmetric disk membrane with 1.0 mm thickness under the pure CO2 sweeping. Its excellent operational stability was also verified even at 1023 K in pure CO2. These findings highlight the significant enhancement in oxygen permeation membrane performance achievable by adjusting the grain orientation. Consequently, Nd2NiO4+δ emerges as a promising candidate for industrial applications in air separation, syngas production, and CO2 capture under harsh conditions
Nitrogen Doping Improves the Immobilization and Catalytic Effects of Co9S8 in Li-S Batteries
Several critical issues, such as the shuttling effect and the sluggish reaction kinetics, exist in the design of high-performance lithium–sulfur (Li-S) batteries. Here, it is reported that nitrogen doping can simultaneously and significantly improve both the immobilization and catalyzation effects of Co9S8 nanoparticles in Li-S batteries. Combining the theoretical calculations with experimental investigations, it is revealed that nitrogen atoms can increase the binding energies between LiPSs and Co9S8, and as well as alleviate the sluggish kinetics of Li-S chemistry in the Li2S6 cathode. The same effects are also observed when adding N-Co9S8 nanoparticles into the commercial Li2S cathode (which has various intrinsic advantages, but unfortunately a high overpotential). A remarkable improvement in the battery performances in both cases is observed. The work brings heteroatom-doped Co9S8 to the attention of designing high-performance Li-S batteries. A fundamental understanding of the inhibition of LiPSs shuttle and the catalytic effect of Li2S in the newly developed system may encourage more effort along this interesting direction. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
A comprehensive score reflecting memory-related fMRI activations and deactivations as potential biomarker for neurocognitive aging
Older adults and particularly those at risk for developing dementia typically show a
decline in episodic memory performance, which has been associated with altered
memory network activity detectable via functional magnetic resonance imaging
(fMRI). To quantify the degree of these alterations, a score has been developed as a
putative imaging biomarker for successful aging in memory for older adults (Functional Activity Deviations during Encoding, FADE; Düzel et al., Hippocampus, 2011; 21:
803–814). Here, we introduce and validate a more comprehensive version of the
FADE score, termed FADE-SAME (Similarity of Activations during Memory Encoding),
which differs from the original FADE score by considering not only activations but
also deactivations in fMRI contrasts of stimulus novelty and successful encoding, and
by taking into account the variance of young adults' activations. We computed both
scores for novelty and subsequent memory contrasts in a cohort of 217 healthy
adults, including 106 young and 111 older participants, as well as a replication cohort
of 117 young subjects. We further tested the stability and generalizability of both
scores by controlling for different MR scanners and gender, as well as by using different data sets of young adults as reference samples. Both scores showed robust agegroup-related differences for the subsequent memory contrast, and the FADE-SAME
score additionally exhibited age-group-related differences for the novelty contrast.
Furthermore, both scores correlate with behavioral measures of cognitive aging,
namely memory performance. Taken together, our results suggest that single-value
scores of memory-related fMRI responses may constitute promising biomarkers for
quantifying neurocognitive aging
Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel
Paradoxical Coupling of Triglyceride Synthesis and Fatty Acid Oxidation in Skeletal Muscle Overexpressing DGAT1
Acyclovir for treating varicella in otherwise healthy children and adolescents: a systematic review of randomised controlled trials
BACKGROUND: Acyclovir has the potential to shorten the course of chickenpox which may result in reduced costs and morbidity. We conducted a systematic review of randomised controlled trials that evaluated acyclovir for the treatment of chickenpox in otherwise healthy children. METHODS: MEDLINE, EMBASE, and the Cochrane Library were searched. The reference lists of relevant articles were examined and primary authors and Glaxo Wellcome were contacted to identify additional trials. Two reviewers independently screened studies for inclusion, assessed study quality using the Jadad scale and allocation concealment, and extracted data. Continuous data were converted to a weighted mean difference (WMD). Overall estimates were not calculated due to differences in the age groups studied. RESULTS: Three studies were included. Methodological quality was 3 (n = 2) and 4 (n = 1) on the Jadad scale. Acyclovir was associated with a significant reduction in the number of days with fever, from -1.0 (95% CI -1.5,-0.5) to -1.3 (95% CI -2.0,-0.6). Results were inconsistent with respect to the number of days to no new lesions, the maximum number of lesions and relief of pruritis. There were no clinically important differences between acyclovir and placebo with respect to complications or adverse effects. CONCLUSION: Acyclovir appears to be effective in reducing the number of days with fever among otherwise healthy children with chickenpox. The results were inconsistent with respect to the number of days to no new lesions, the maximum number of lesions and the relief of itchiness. The clinical importance of acyclovir treatment in otherwise healthy children remains controversial
- …
