4,623 research outputs found
Energy absorption device Patent
Energy absorption device in high precision gear train for protection against damage to components caused by stop load
Engine/airframe interface dynamics experience
Problems of engine/drive system torsional stability, engine and output shaft critical speeds, and engine vibration at helicopter rotor order frequencies are discussed, and test data and analyses presented. Also presented is a rotor/drive system dynamics problem not directly related to the engine
Reliability considerations in the design, assembly, and testing of the mariner iv power system
Reliability considerations in design, assembly, and testing of Mariner IV power syste
Orientations of the lamellar phase of block copolymer melts under oscillatory shear flow
We develop a theory to describe the reorientation phenomena in the lamellar
phase of block copolymer melt under reciprocating shear flow. We show that
similar to the steady-shear, the oscillating flow anisotropically suppresses
fluctuations and gives rise to the parallel-perpendicular orientation
transition. The experimentally observed high-frequency reverse transition is
explained in terms of interaction between the melt and the shear-cell walls.Comment: RevTex, 3 pages, 1 figure, submitted to PR
An Extended Network Model with a Packages Diffusion Process
The dynamics of a packages diffusion process within a selforganized network
is analytically studied by means of an extended % -spin facilitated kinetic
Ising model (Fredrickson-Andersen model) using a Fock-space representation for
the master equation. To map the three component system (active, passive and
packages cells) onto a lattice we apply two types of second quantized
operators. The active cells correspond to mobile states whereas the passive
cells correspond to immobile states of the Fredrickson-Andersen model. An
inherent cooperativity is included assuming that the local dynamics and
subsequently the local mobilities are restricted by the occupation of
neighboring cells. Depending on a temperature-like parameter
(interconnectivity) the diffusive process of the packages (information) can be
almost stopped, thus we get a well separation of the time regimes and a
quasi-localization for the intermediate range at low temperatures.Comment: 13 pages and 1 figur
Coherent States Formulation of Polymer Field Theory
We introduce a stable and efficient complex Langevin (CL) scheme to enable
the first numerical simulations of the coherent-states (CS) formulation of
polymer field theory. In contrast with Edwards' well known auxiliary-field (AF)
framework, the CS formulation does not contain an embedded non-linear,
non-local functional of the auxiliary fields, and the action of the field
theory has a fully explicit, finite-order and semi-local polynomial character.
In the context of a polymer solution model, we demonstrate that the new CS-CL
dynamical scheme for sampling fluctuations in the space of coherent states
yields results in good agreement with now-standard AF simulations. The
formalism is potentially applicable to a broad range of polymer architectures
and may facilitate systematic generation of trial actions for use in
coarse-graining and numerical renormalization-group studies.Comment: 14pages 8 figure
Microphase separation in polyelectrolytic diblock copolymer melt : weak segregation limit
We present a generalized theory of microphase separation for charged-neutral
diblock copolymer melt. Stability limit of the disordered phase for salt-free
melt has been calculated using Random Phase Approximation (RPA) and
self-consistent field theory (SCFT). Explicit analytical free energy
expressions for different classical ordered microstructures (lamellar, cylinder
and sphere) are presented. We demonstrate that chemical mismatch required for
the onset of microphase separation () in charged-neutral
diblock melt is higher and the period of ordered microstructures is lower than
those for the corresponding neutral-neutral diblock system. Theoretical
predictions on the period of ordered structures in terms of Coulomb
electrostatic interaction strength, chain length, block length, and the
chemical mismatch between blocks are presented. SCFT has been used to go beyond
the stability limit, where electrostatic potential and charge distribution are
calculated self-consistently. Stability limits calculated using RPA are in
perfect agreement with the corresponding SCFT calculations. Limiting laws for
stability limit and the period of ordered structures are presented and
comparisons are made with an earlier theory. Also, transition boundaries
between different morphologies have been investigated
Evidence of a Critical time in Constrained Kinetic Ising models
We study the relaxational dynamics of the one-spin facilitated Ising model
introduced by Fredrickson and Andersen. We show the existence of a critical
time which separates an initial regime in which the relaxation is exponentially
fast and aging is absent from a regime in which relaxation becomes slow and
aging effects are present. The presence of this fast exponential process and
its associated critical time is in agreement with some recent experimental
results on fragile glasses.Comment: 20 Pages + 7 Figures, Revte
Stability of Quasicrystals Composed of Soft Isotropic Particles
Quasicrystals whose building blocks are of mesoscopic rather than atomic
scale have recently been discovered in several soft-matter systems. Contrary to
metallurgic quasicrystals whose source of stability remains a question of great
debate to this day, we argue that the stability of certain soft-matter
quasicrystals can be directly explained by examining a coarse-grained free
energy for a system of soft isotropic particles. We show, both theoretically
and numerically, that the stability can be attributed to the existence of two
natural length scales in the pair potential, combined with effective three-body
interactions arising from entropy. Our newly gained understanding of the
stability of soft quasicrystals allows us to point at their region of stability
in the phase diagram, and thereby may help control the self-assembly of
quasicrystals and a variety of other desired structures in future experimental
realizations.Comment: Revised abstract, more detailed explanations, and better images of
the numerical minimization of the free energ
Reactions at polymer interfaces: A Monte Carlo Simulation
Reactions at a strongly segregated interface of a symmetric binary polymer
blend are investigated via Monte Carlo simulations. End functionalized
homopolymers of different species interact at the interface instantaneously and
irreversibly to form diblock copolymers. The simulations, in the framework of
the bond fluctuation model, determine the time dependence of the copolymer
production in the initial and intermediate time regime for small reactant
concentration . The results are compared to
recent theories and simulation data of a simple reaction diffusion model. For
the reactant concentration accessible in the simulation, no linear growth of
the copolymer density is found in the initial regime, and a -law is
observed in the intermediate stage.Comment: to appear in Macromolecule
- …
