124 research outputs found
A Quantum Scattering Interferometer
The collision of two ultra-cold atoms results in a quantum-mechanical
superposition of two outcomes: each atom continues without scattering and each
atom scatters as a spherically outgoing wave with an s-wave phase shift. The
magnitude of the s-wave phase shift depends very sensitively on the interaction
between the atoms. Quantum scattering and the underlying phase shifts are
vitally important in many areas of contemporary atomic physics, including
Bose-Einstein condensates, degenerate Fermi gases, frequency shifts in atomic
clocks, and magnetically-tuned Feshbach resonances. Precise measurements of
quantum scattering phase shifts have not been possible until now because, in
scattering experiments, the number of scattered atoms depends on the s-wave
phase shifts as well as the atomic density, which cannot be measured precisely.
Here we demonstrate a fundamentally new type of scattering experiment that
interferometrically detects the quantum scattering phase shifts of individual
atoms. By performing an atomic clock measurement using only the scattered part
of each atom, we directly and precisely measure the difference of the s-wave
phase shifts for the two clock states in a density independent manner. Our
method will give the most direct and precise measurements of ultracold
atom-atom interactions and will place stringent limits on the time variations
of fundamental constants.Comment: Corrected formatting and typo
Magneto-optical Trapping of Cadmium
We report the laser-cooling and confinement of Cd atoms in a magneto-optical
trap, and characterize the loading process from the background Cd vapor. The
trapping laser drives the 1S0-1P1 transition at 229 nm in this two-electron
atom and also photoionizes atoms directly from the 1P1 state. This
photoionization overwhelms the other loss mechanisms and allows a direct
measurement of the photoionization cross section, which we measure to be
2(1)x10^(-16)cm^(2) from the 1P1 state. When combined with nearby laser-cooled
and trapped Cd^(+) ions, this apparatus could facilitate studies in ultracold
interactions between atoms and ions.Comment: 8 pages, 11 figure
Cold Collision Frequency Shift of the 1S-2S Transition in Hydrogen
We have observed the cold collision frequency shift of the 1S-2S transition
in trapped spin-polarized atomic hydrogen. We find , where is the sample density. From this
we derive the 1S-2S s-wave triplet scattering length, nm,
which is in fair agreement with a recent calculation. The shift provides a
valuable probe of the distribution of densities in a trapped sample.Comment: Accepted for publication in PRL, 9 pages, 4 PostScript figures,
ReVTeX. Updated connection of our measurement to theoretical wor
Pauli Blocking of Collisions in a Quantum Degenerate Atomic Fermi Gas
We have produced an interacting quantum degenerate Fermi gas of atoms
composed of two spin-states of magnetically trapped K. The relative
Fermi energies are adjusted by controlling the population in each spin-state.
Measurements of the thermodynamics reveal the resulting imbalance in the mean
energy per particle between the two species, which is as large as a factor of
1.4 at our lowest temperature. This imbalance of energy comes from a
suppression of collisions between atoms in the gas due to the Pauli exclusion
principle. Through measurements of the thermal relaxation rate we have directly
observed this Pauli blocking as a factor of two reduction in the effective
collision cross-section in the quantum degenerate regime.Comment: 11 pages, 4 figure
1S-2S Spectrum of a Hydrogen Bose-Einstein Condensate
We calculate the two-photon 1S-2S spectrum of an atomic hydrogen
Bose-Einstein condensate in the regime where the cold collision frequency shift
dominates the lineshape. WKB and static phase approximations are made to find
the intensities for transitions from the condensate to motional eigenstates for
2S atoms. The excited state wave functions are found using a mean field
potential which includes the effects of collisions with condensate atoms.
Results agree well with experimental data. This formalism can be used to find
condensate spectra for a wide range of excitation schemes.Comment: 13 pages, 4 figure
Slowing and cooling molecules and neutral atoms by time-varying electric field gradients
A method of slowing, accelerating, cooling, and bunching molecules and
neutral atoms using time-varying electric field gradients is demonstrated with
cesium atoms in a fountain. The effects are measured and found to be in
agreement with calculation. Time-varying electric field gradient slowing and
cooling is applicable to atoms that have large dipole polarizabilities,
including atoms that are not amenable to laser slowing and cooling, to Rydberg
atoms, and to molecules, especially polar molecules with large electric dipole
moments. The possible applications of this method include slowing and cooling
thermal beams of atoms and molecules, launching cold atoms from a trap into a
fountain, and measuring atomic dipole polarizabilities.Comment: 13 pages, 10 figures. Scheduled for publication in Nov. 1 Phys. Rev.
Suppression and enhancement of impurity scattering in a Bose-Einstein condensate
Impurity atoms propagating at variable velocities through a trapped
Bose-Einstein condensate were produced using a stimulated Raman transition. The
redistribution of momentum by collisions between the impurity atoms and the
stationary condensate was observed in a time-of-flight analysis. The
collisional cross section was dramatically reduced when the velocity of the
impurities was reduced below the speed of sound of the condensate, in agreement
with the Landau criterion for superfluidity. For large numbers of impurity
atoms, we observed an enhancement of atomic collisions due to bosonic
stimulation. This enhancement is analogous to optical superradiance.Comment: 4 pages, 4 figure
Collective dynamics of internal states in a Bose gas
Theory for the Rabi and internal Josephson effects in an interacting Bose gas
in the cold collision regime is presented. By using microscopic transport
equation for the density matrix the problem is mapped onto a problem of
precession of two coupled classical spins. In the absence of an external
excitation field our results agree with the theory for the density induced
frequency shifts in atomic clocks. In the presence of the external field, the
internal Josephson effect takes place in a condensed Bose gas as well as in a
non-condensed gas. The crossover from Rabi oscillations to the Josephson
oscillations as a function of interaction strength is studied in detail.Comment: 18 pages, 2 figure
Cold atom Clocks and Applications
This paper describes advances in microwave frequency standards using
laser-cooled atoms at BNM-SYRTE. First, recent improvements of the Cs
and Rb atomic fountains are described. Thanks to the routine use of a
cryogenic sapphire oscillator as an ultra-stable local frequency reference, a
fountain frequency instability of where
is the measurement time in seconds is measured. The second advance is a
powerful method to control the frequency shift due to cold collisions. These
two advances lead to a frequency stability of at 7\times 10^{-16}^{87}^{133}$Cs fountains.
Finally we give an update on the cold atom space clock PHARAO developed in
collaboration with CNES. This clock is one of the main instruments of the
ACES/ESA mission which is scheduled to fly on board the International Space
Station in 2008, enabling a new generation of relativity tests.Comment: 30 pages, 11 figure
Clinical effect of mirikizumab treatment on bowel urgency in patients with moderately to severely active ulcerative colitis and the clinical relevance of bowel urgency improvement for disease remission
Background: Bowel urgency reduces ulcerative colitis patients' quality of life. Mirikizumab, a p19-directed anti-IL-23 antibody, demonstrates ulcerative colitis efficacy. Mirikizumab efficacy to reduce bowel urgency and bowel urgency association with other endpoints were analyzed in 2 Phase 3 trials.
Methods: LUCENT-1 (Induction): 1162 patients randomized 3:1 to intravenous 300 mg mirikizumab or placebo every 4 weeks for 12 weeks. LUCENT-2 (Maintenance): 544 mirikizumab responders during induction were re-randomized 2:1 to subcutaneous mirikizumab 200 mg or placebo every 4 weeks for 40 weeks (52 weeks of continuous treatment). Bowel urgency was measured using the Urgency Numeric Rating Scale (0–10); for patients with LUCENT-1 baseline score ≥3, bowel urgency clinically meaningful improvement (≥3-point decrease) and remission (score ≤1) rates in mirikizumab versus placebo groups were compared at Weeks 12 and 52. Associations between bowel urgency and other efficacy endpoints were assessed at Weeks 12 and 52.
Results: A significantly higher proportion of mirikizumab patients versus placebo achieved clinically meaningful improvement in bowel urgency and remission at Weeks 12 and 52. Significantly higher percentages of patients achieving bowel urgency clinically meaningful improvement or remission, compared with those who did not, also achieved endpoints for clinical, corticosteroid-free, endoscopic, and symptomatic remission; clinical response; normalized fecal calprotectin and C-reactive protein; and improved quality of life.
Conclusions: In patients with ulcerative colitis, bowel urgency improvement was associated with better clinical outcomes than in patients without improvement during induction and maintenance. A greater proportion of mirikizumab patients achieved sustainable bowel urgency improvement and remission compared to placebo patients
- …
