793 research outputs found
Boundary elements of the Tetrahymena telomerase RNA template and alignment domains
Telomerase is a DNA polymerase fundamental to the replication and maintenance of telomere sequences at chromosome ends. The RNA component of telomerase is essential for the synthesis of telomere repeats. In vitro, the template domain (5'-CAACCCCAA-3') of the Tetrahymena telomerase RNA dictates the addition of Tetrahymena-specific telomere repeats d(TTGGGG)n, onto the 3' end of G-rich or telomeric substrates that are base-paired with the template and alignment regions of the RNA. Using a reconstituted in vitro system, we determined that altering the sequence of the alignment and template domains affects processivity of telomerase without abolishing telomerase activity. These results suggest that alternative template/alignment regions may be functional. In the ciliate telomerase RNAs, there is a conserved sequence 5'-(CU)GUCA-3', located two residues upstream of the template domain. The location and sequence of this conserved domain defined the 5' boundary of the template region. These data provide insights into the regulation of telomere synthesis by telomerase
Tetrahymena telomerase catalyzes nucleolytic cleavage and nonprocessive elongation
Telomerase is a ribonucleoprotein enzyme that adds telomeric repeats to chromosomes, maintaining telomere length and stabilizing chromosome ends. In vitro, telomerase from the ciliate Tetrahymena elongates single-stranded, guanosine-rich DNA primers by adding repeats of the Tetrahymena telomeric sequence, dT2G4. We have identified two activities of Tetrahymena telomerase in addition to the previously described processive elongation reaction: a 3'-5' nucleolytic cleavage of primer or product DNA and a nonprocessive mode of elongation. The nucleolytic cleavage activity removed residues not conforming to the telomeric repeat sequence from a primer 3' end, eliminating mismatch between DNA primer and RNA template sequences. Template-matched residues were also cleaved from primer or product DNA. Specific primer lengths, sequences, and concentrations stimulated cleavage and processive or nonprocessive elongation differentially. These newly identified activities suggest that telomerase may catalyze a range of telomere synthesis and repair functions and suggest mechanistic similarities between telomerase and RNA polymerase enzymes. On the basis of our results, we propose a model for telomerase primer binding, cleavage, and elongation
Leadership, the logic of sufficiency and the sustainability of education
The notion of sufficiency has not yet entered mainstream educational thinking, and it still has to make its mark upon educational leadership. However, a number of related concepts – particularly those of sustainability and complexity theory – are beginning to be noticed. This article examines these two concepts and uses them to critique the quasi-economic notion of efficiency, before arguing that the concept of sufficiency arises naturally from this discussion. This concept, originally derived from environmental thinking, has both metaphorical and practical impact for educational organizations and their leadership. An examination of three possible meanings suggests that while an embrace of an imperative concept of sufficiency seems increasingly necessary, its adoption would probably lead to a number of other problems, as it challenges some fundamental societal values and assumptions. Nevertheless, the article argues that these need to be addressed for the sake of both sustainable leadership and a sustainable planet
Extreme Telomere Length Dimorphism in the Tasmanian Devil and Related Marsupials Suggests Parental Control of Telomere Length
Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago. © 2012 Bender et al
Angular Dependence of Neutrino Flux in KM3 Detectors in Low Scale Gravity Models
Cubic kilometer neutrino telescopes are capable of probing fundamental
questions of ultra-high energy neutrino interactions. There is currently great
interest in neutrino interactions caused by low-scale, extra dimension models.
Above 1 PeV the cross section in low scale gravity models rises well above the
total Standard Model cross section. We assess the observability of this effect
in the 1 PeV - 100 PeV energy range of kilometer-scale detectors with several
new points of emphasis that hinge on enhanced neutral current cross sections. A
major point is the importance of ``feed-down'' regeneration of upward neutrino
flux, driven by new-physics neutral current interactions in the flux evolution
equations. Feed-down is far from negligible, and it is essential to include its
effect. We then find that the angular distribution of events has high
discriminating value in separating models. In particular the ``up-to-down''
ratio between upward and downward-moving neutrino fluxes is a practical
diagnostic tool which can discriminate between models in the near future. The
slope of the angular distribution, in the region of maximum detected flux, is
also substantially different in low-scale gravity and the Standard Model. These
observables are only weakly dependent on astrophysical flux uncertainties. We
conclude that angular distributions can reveal a breakdown of the Standard
Model and probe the new physics beyond, as soon as data become available.Comment: 25 pages, 6 figures, discussion of calculations expanded, references
adde
Telomerase activity and telomere length in primary and metastatic tumors from pediatric bone cancer patients
The presence of telomerase activity has been analyzed in almost all tumor types and tumor-derived cell lines. However, there are very few studies that focus on the presence of telomerase activity in bone tumors, and most of them report analysis on very few samples or bone-derived cell lines. The objective of this study was to analyze the telomere length and telomerase activity in primary tumors and metastatic lesions from pediatric osteosarcoma and Ewing's sarcoma patients. The presence of telomerase activity was analyzed by the telomeric repeat amplification protocol assay, and the telomere length was measured by Southern blot. Results were related to survival and clinical outcome. Telomerase activity was detected in 85% of the bone tumor metastases (100% Ewing's sarcomas and 75% osteosarcomas) but only in 12% of the primary tumors (11.1% osteosarcomas and 12.5% Ewing's sarcomas). Bone tumor tissues with telomerase activity had mean telomere lengths 3 kb shorter than those with no detectable telomerase activity (p = 0.041). The presence of telomerase activity was associated with survival (p = 0.009), and longer event-free survival periods were found in patients who lacked telomerase activity compared with those who had detectable telomerase activity levels in their tumor tissues (p = 0.037). The presence of longer telomeres in primary pediatric bone tumors than in metastases could be indicative of alternative mechanisms of lengthening of telomeres for their telomere maintenance rather than telomerase activity. Nevertheless, the activation of telomerase seems to be a crucial step in the malignant progression and acquisition of invasive capability of bone tumors
The Telomerase Database
Telomerase is a ribonucleoprotein enzyme that extends DNA at the chromosome ends in most eukaryotes. Since 1985, telomerase has been studied intensively and components of the telomerase complex have been identified from over 160 eukaryotic species. In the last two decades, there has been a growing interest in studying telomerase owing to its vital role in chromosome stability and cellular immortality. To keep up with the remarkable explosion of knowledge about telomerase, we compiled information related to telomerase in an exhaustive database called the Telomerase Database (http://telomerase.asu.edu/). The Telomerase Database provides comprehensive information about (i) sequences of the RNA and protein subunits of telomerase, (ii) sequence alignments based on the phylogenetic relationship and structure, (iii) secondary structures of the RNA component and tertiary structures of various subunits of telomerase, (iv) mutations of telomerase components found in human patients and (v) active researchers who contributed to the wealth of current knowledge on telomerase. The information is hierarchically organized by the components, i.e. the telomerase reverse transcriptase (TERT), telomerase RNA (TR) and other telomerase-associated proteins. The Telomerase Database is a useful resource especially for researchers who are interested in investigating the structure, function, evolution and medical relevance of the telomerase enzyme
Telomerase promoter mutations in cancer: an emerging molecular biomarker?
João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to
the manuscript.Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target
Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer
Background
Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers.
Main body
The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation.
hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies.
Conclusion
Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.info:eu-repo/semantics/publishedVersio
Ancestral Mutation in Telomerase Causes Defects in Repeat Addition Processivity and Manifests As Familial Pulmonary Fibrosis
The telomerase reverse transcriptase synthesizes new telomeres onto chromosome ends by copying from a short template within its integral RNA component. During telomere synthesis, telomerase adds multiple short DNA repeats successively, a property known as repeat addition processivity. However, the consequences of defects in processivity on telomere length maintenance are not fully known. Germline mutations in telomerase cause haploinsufficiency in syndromes of telomere shortening, which most commonly manifest in the age-related disease idiopathic pulmonary fibrosis. We identified two pulmonary fibrosis families that share two non-synonymous substitutions in the catalytic domain of the telomerase reverse transcriptase gene hTERT: V791I and V867M. The two variants fell on the same hTERT allele and were associated with telomere shortening. Genealogy suggested that the pedigrees shared a single ancestor from the nineteenth century, and genetic studies confirmed the two families had a common founder. Functional studies indicated that, although the double mutant did not dramatically affect first repeat addition, hTERT V791I-V867M showed severe defects in telomere repeat addition processivity in vitro. Our data identify an ancestral mutation in telomerase with a novel loss-of-function mechanism. They indicate that telomere repeat addition processivity is a critical determinant of telomere length and telomere-mediated disease
- …
