180 research outputs found
The Effects of Simplifying Traffic-Zone and Street-Network Systems on the Accuracy of Traffic Assignments in Small Urban Areas in Indiana : Interim Report
Complex Reorganization and Predominant Non-Homologous Repair Following Chromosomal Breakage in Karyotypically Balanced Germline Rearrangements and Transgenic Integration
We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically-interpreted translocations and inversions. We confirm that the recently described phenomenon of “chromothripsis” (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline where it can resolve to a karyotypically balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31%) than previously observed in benign CNVs. We compared these results to experimentally-generated DNA breakage-repair by sequencing seven transgenic animals, and revealed extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion is the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations
Population-level impact of expanding PrEP coverage by offering long-acting injectable PrEP to MSM in three high-resource settings: a model comparison analysis
INTRODUCTION: Long-acting injectable cabotegravir (CAB-LA) demonstrated superiority to daily tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) for HIV pre-exposure prophylaxis (PrEP) in the HPTN 083/084 trials. We compared the potential impact of expanding PrEP coverage by offering CAB-LA to men who have sex with men (MSM) in Atlanta (US), Montreal (Canada) and the Netherlands, settings with different HIV epidemics. METHODS: Three risk-stratified HIV transmission models were independently parameterized and calibrated to local data. In Atlanta, Montreal and the Netherlands, the models, respectively, estimated mean TDF/FTC coverage starting at 29%, 7% and 4% in 2022, and projected HIV incidence per 100 person-years (PY), respectively, decreasing from 2.06 to 1.62, 0.08 to 0.03 and 0.07 to 0.001 by 2042. Expansion of PrEP coverage was simulated by recruiting new CAB-LA users and by switching different proportions of TDF/FTC users to CAB-LA. Population effectiveness and efficiency of PrEP expansions were evaluated over 20 years in comparison to baseline scenarios with TDF/FTC only. RESULTS: Increasing PrEP coverage by 11 percentage points (pp) from 29% to 40% by 2032 was expected to avert a median 36% of new HIV acquisitions in Atlanta. Substantially larger increases (by 33 or 26 pp) in PrEP coverage (to 40% or 30%) were needed to achieve comparable reductions in Montreal and the Netherlands, respectively. A median 17 additional PYs on PrEP were needed to prevent one acquisition in Atlanta with 40% PrEP coverage, compared to 1000+ in Montreal and 4000+ in the Netherlands. Reaching 50% PrEP coverage by 2032 by recruiting CAB-LA users among PrEP-eligible MSM could avert >45% of new HIV acquisitions in all settings. Achieving targeted coverage 5 years earlier increased the impact by 5-10 pp. In the Atlanta model, PrEP expansions achieving 40% and 50% coverage reduced differences in PrEP access between PrEP-indicated White and Black MSM from 23 to 9 pp and 4 pp, respectively. CONCLUSIONS: Achieving high PrEP coverage by offering CAB-LA can impact the HIV epidemic substantially if rolled out without delays. These PrEP expansions may be efficient in settings with high HIV incidence (like Atlanta) but not in settings with low HIV incidence (like Montreal and the Netherlands)
CyberKnife® enhanced conventionally fractionated chemoradiation for high grade glioma in close proximity to critical structures
<p>Abstract</p> <p>Introduction</p> <p>With conventional radiation technique alone, it is difficult to deliver radical treatment (≥ 60 Gy) to gliomas that are close to critical structures without incurring the risk of late radiation induced complications. Temozolomide-related improvements in high-grade glioma survival have placed a higher premium on optimal radiation therapy delivery. We investigated the safety and efficacy of utilizing highly conformal and precise CyberKnife radiotherapy to enhance conventional radiotherapy in the treatment of high grade glioma.</p> <p>Methods</p> <p>Between January 2002 and January 2009, 24 patients with good performance status and high-grade gliomas in close proximity to critical structures (i.e. eyes, optic nerves, optic chiasm and brainstem) were treated with the CyberKnife. All patients received conventional radiation therapy following tumor resection, with a median dose of 50 Gy (range: 40 - 50.4 Gy). Subsequently, an additional dose of 10 Gy was delivered in 5 successive 2 Gy daily fractions utilizing the CyberKnife<sup>® </sup>image-guided radiosurgical system. The majority of patients (88%) received concurrent and/or adjuvant Temozolmide.</p> <p>Results</p> <p>During CyberKnife treatments, the mean number of radiation beams utilized was 173 and the mean number of verification images was 58. Among the 24 patients, the mean clinical treatment volume was 174 cc, the mean prescription isodose line was 73% and the mean percent target coverage was 94%. At a median follow-up of 23 months for the glioblastoma multiforme cohort, the median survival was 18 months and the two-year survival rate was 37%. At a median follow-up of 63 months for the anaplastic glioma cohort, the median survival has not been reached and the 4-year survival rate was 71%. There have been no severe late complications referable to this radiation regimen in these patients.</p> <p>Conclusion</p> <p>We utilized fractionated CyberKnife radiotherapy as an adjunct to conventional radiation to improve the targeting accuracy of high-grade glioma radiation treatment. This technique was safe, effective and allowed for optimal dose-delivery in our patients. The value of image-guided radiation therapy for the treatment of high-grade gliomas deserves further study.</p
Recommended from our members
Potential molecular consequences of transgene integration: The R6/2 mouse example
Integration of exogenous DNA into a host genome represents an important route to generate animal and cellular models for exploration into human disease and therapeutic development. In most models, little is known concerning structural integrity of the transgene, precise site of integration, or its impact on the host genome. We previously used whole-genome and targeted sequencing approaches to reconstruct transgene structure and integration sites in models of Huntington's disease, revealing complex structural rearrangements that can result from transgenesis. Here, we demonstrate in the R6/2 mouse, a widely used Huntington's disease model, that integration of a rearranged transgene with coincident deletion of 5,444 bp of host genome within the gene G12695 has striking molecular consequences. G12695, the function of which is unknown, is normally expressed at negligible levels in mouse brain, but transgene integration has resulted in cortical expression of a partial fragment (exons 8-11) 3' to the transgene integration site in R6/2. This transcript shows significant expression among the extensive network of differentially expressed genes associated with this model, including synaptic transmission, cell signalling and transcription. These data illustrate the value of sequence-level resolution of transgene insertions and transcription analysis to inform phenotypic characterization of transgenic models utilized in therapeutic research.This work was supported by the National Institutes of Health HD065286 (JFG), MH095867 (MET), GM061354 (MET, JFG), CHDI Inc. (JFG, AJM), NARSAD (MET), the Canada Research Chairs program and a grant from the Natural Science and Engineering Research Council of Canada (CE), and the Neurological Foundation of New Zealand (JJ)
Extended Analysis of HIV Infection in Cisgender Men and Transgender Women Who Have Sex with Men Receiving Injectable Cabotegravir for HIV Prevention: HPTN 083
HPTN 083 demonstrated that injectable cabotegravir (CAB) was superior to oral tenofovir disoproxil fumarate-emtricitabine (TDF-FTC) for HIV prevention in cisgender men and transgender women who have sex with men. We previously analyzed 58 infections in the blinded phase of HPTN 083 (16 in the CAB arm and 42 in the TDF-FTC arm). This report describes 52 additional infections that occurred up to 1 year after study unblinding (18 in the CAB arm and 34 in the TDF-FTC arm). Retrospective testing included HIV testing, viral load testing, quantification of study drug concentrations, and drug resistance testing. The new CAB arm infections included 7 with CAB administration within 6 months of the first HIV-positive visit (2 with on-time injections, 3 with ≥1 delayed injection, and 2 who restarted CAB) and 11 with no recent CAB administration. Three cases had integrase strand transfer inhibitor (INSTI) resistance (2 with on-time injections and 1 who restarted CAB). Among 34 CAB infections analyzed to date, diagnosis delays and INSTI resistance were significantly more common in infections with CAB administration within 6 months of the first HIV-positive visit. This report further characterizes HIV infections in persons receiving CAB preexposure prophylaxis and helps define the impact of CAB on the detection of infection and the emergence of INSTI resistance
Program design features that can improve participation in health education interventions
<p>Abstract</p> <p>Background</p> <p>Although there have been reported benefits of health education interventions across various health issues, the key to program effectiveness is participation and retention. Unfortunately, not everyone is willing to participate in health interventions upon invitation. In fact, health education interventions are vulnerable to low participation rates. The objective of this study was to identify design features that may increase participation in health education interventions and evaluation surveys, and to maximize recruitment and retention efforts in a general ambulatory population.</p> <p>Methods</p> <p>A cross-sectional questionnaire was administered to 175 individuals in waiting rooms of two hospitals diagnostic centres in Toronto, Canada. Subjects were asked about their willingness to participate, in principle, and the extent of their participation (frequency and duration) in health education interventions under various settings and in intervention evaluation surveys using various survey methods.</p> <p>Results</p> <p>The majority of respondents preferred to participate in one 30–60 minutes education intervention session a year, in hospital either with a group or one-on-one with an educator. Also, the majority of respondents preferred to spend 20–30 minutes each time, completing one to two evaluation surveys per year in hospital or by mail.</p> <p>Conclusion</p> <p>When designing interventions and their evaluation surveys, it is important to consider the preferences for setting, length of participation and survey method of your target population, in order to maximize recruitment and retention efforts. Study respondents preferred short and convenient health education interventions and surveys. Therefore, brevity, convenience and choice appear to be important when designing education interventions and evaluation surveys from the perspective of our target population.</p
Tumor Susceptibility Gene 101 (TSG101) Is a Novel Binding-Partner for the Class II Rab11-FIPs
The Rab11-FIPs (Rab11-family interacting proteins; henceforth, FIPs) are a family of Rab11a/Rab11b/Rab25 GTPase effector proteins implicated in an assortment of intracellular trafficking processes. Through proteomic screening, we have identified TSG101 (tumor susceptibility gene 101), a component of the ESCRT-I (endosomal sorting complex required for transport) complex, as a novel FIP4-binding protein, which we find can also bind FIP3. We show that α-helical coiled-coil regions of both TSG101 and FIP4 mediate the interaction with the cognate protein, and that point mutations in the coiled-coil regions of both TSG101 and FIP4 abrogate the interaction. We find that expression of TSG101 and FIP4 mutants cause cytokinesis defects, but that the TSG101-FIP4 interaction is not required for localisation of TSG101 to the midbody/Flemming body during abscission. Together, these data suggest functional overlap between Rab11-controlled processes and components of the ESCRT pathway
The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies
Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology
- …
