645 research outputs found
Radioluminescence des milieux organiques III. Étude expérimentale des solutions aromatiques liquides
L'étude du déclin de la scintillation émise par des solutions aromatiques liquides irradiées par un rayonnement β a permis de montrer que la composante différée est due à une interaction entre deux états triplets du soluté excités par capture de l'énergie du solvant. La constante de Stern-Volmer de la réaction de transfert de l'énergie des états triplets du solvant au soluté (α-NPO) a été estimée à 350 M -1 pour les solutions de benzène et de toluène. La durée de vie de l'état triplet le plus bas du solvant est inférieure à une vingtaine de ns. Par ailleurs, on a évalué à environ 40 Å le rayon des zones cylindriques de forte densité d'activation dans lesquelles a lieu la réaction d'annihilation bimoléculaire des états triplets
Highly sensitive gamma-spectrometers of GERDA for material screening: Part I
The GERDA experiment aims to search for the neutrinoless double beta-decay of
76Ge and possibly for other rare processes. The sensitivity of the first phase
is envisioned to be more than one order of magnitude better than in previous
neutrinoless double beta-decay experiments. This implies that materials with
ultra-low radioactive contamination need to be used for the construction of the
detector and its shielding. Therefore the requirements on material screening
include high-sensitivity low-background detection techniques and long
measurement times. In this article, an overview of material-screening
laboratories available to the GERDA collaboration is given, with emphasis on
the gamma-spectrometry. Additionally, results of an intercomparison of the
evaluation accuracy in these laboratories are presented.Comment: Featured in: Proceedings of the XIV International Baksan School
"Particles and Cosmology" Baksan Valley, Kabardino-Balkaria, Russia, April
16-21,2007. INR RAS, Moscow 2008. ISBN 978-5-94274-055-9, pp. 228-232; (5
pages, 0 figures
Material screening and selection for XENON100
Results of the extensive radioactivity screening campaign to identify
materials for the construction of XENON100 are reported. This Dark Matter
search experiment is operated underground at Laboratori Nazionali del Gran
Sasso (LNGS), Italy. Several ultra sensitive High Purity Germanium detectors
(HPGe) have been used for gamma ray spectrometry. Mass spectrometry has been
applied for a few low mass plastic samples. Detailed tables with the
radioactive contaminations of all screened samples are presented, together with
the implications for XENON100.Comment: 8 pages, 1 figur
The background in the neutrinoless double beta decay experiment GERDA
The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground
laboratory (LNGS) of INFN is searching for neutrinoless double beta decay of
76Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the
Q-value of the decay, Q_bb. To avoid bias in the signal search, the present
analysis does not consider all those events, that fall in a 40 keV wide region
centered around Q_bb. The main parameters needed for the neutrinoless double
beta decay analysis are described. A background model was developed to describe
the observed energy spectrum. The model contains several contributions, that
are expected on the basis of material screening or that are established by the
observation of characteristic structures in the energy spectrum. The model
predicts a flat energy spectrum for the blinding window around Q_bb with a
background index ranging from 17.6 to 23.8*10^{-3} counts/(keV kg yr). A part
of the data not considered before has been used to test if the predictions of
the background model are consistent. The observed number of events in this
energy region is consistent with the background model. The background at Q-bb
is dominated by close sources, mainly due to 42K, 214Bi, 228Th, 60Co and alpha
emitting isotopes from the 226Ra decay chain. The individual fractions depend
on the assumed locations of the contaminants. It is shown, that after removal
of the known gamma peaks, the energy spectrum can be fitted in an energy range
of 200 kev around Q_bb with a constant background. This gives a background
index consistent with the full model and uncertainties of the same size
Limits on uranium and thorium bulk content in GERDA Phase I detectors
Internal contaminations of U, U and Th in the bulk of
high purity germanium detectors are potential backgrounds for experiments
searching for neutrinoless double beta decay of Ge. The data from GERDA
Phase~I have been analyzed for alpha events from the decay chain of these
contaminations by looking for full decay chains and for time correlations
between successive decays in the same detector. No candidate events for a full
chain have been found. Upper limits on the activities in the range of a few
nBq/kg for Ra, Ac and Th, the long-lived daughter
nuclides of U, U and Th, respectively, have been
derived. With these upper limits a background index in the energy region of
interest from Ra and Th contamination is estimated which
satisfies the prerequisites of a future ton scale germanium double beta decay
experiment.Comment: 2 figures, 7 page
Oval Domes: History, Geometry and Mechanics
An oval dome may be defined as a dome whose plan or profile (or both) has an oval form. The word Aoval@ comes from the latin Aovum@, egg. Then, an oval dome has an egg-shaped geometry. The first buildings with oval plans were built without a predetermined form, just trying to close an space in the most economical form. Eventually, the geometry was defined by using arcs of circle with common tangents in the points of change of curvature. Later the oval acquired a more regular form with two axis of symmetry. Therefore, an “oval” may be defined as an egg-shaped form, doubly symmetric, constructed with arcs of circle; an oval needs a minimum of four centres, but it is possible also to build polycentric ovals.
The above definition corresponds with the origin and the use of oval forms in building and may be applied without problem until, say, the XVIIIth century. Since then, the teaching of conics in the elementary courses of geometry made the cultivated people to define the oval as an approximation to the ellipse, an “imperfect ellipse”: an oval was, then, a curve formed with arcs of circles which tries to approximate to the ellipse of the same axes. As we shall see, the ellipse has very rarely been used in building.
Finally, in modern geometrical textbooks an oval is defined as a smooth closed convex curve, a more general definition which embraces the two previous, but which is of no particular use in the study of the employment of oval forms in building.
The present paper contains the following parts: 1) an outline the origin and application of the oval in historical architecture; 2) a discussion of the spatial geometry of oval domes, i. e., the different methods employed to trace them; 3) a brief exposition of the mechanics of oval arches and domes; and 4) a final discussion of the role of Geometry in oval arch and dome design
Results on decay with emission of two neutrinos or Majorons in Ge from GERDA Phase I
A search for neutrinoless decay processes accompanied with
Majoron emission has been performed using data collected during Phase I of the
GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del
Gran Sasso of INFN (Italy). Processes with spectral indices n = 1, 2, 3, 7 were
searched for. No signals were found and lower limits of the order of 10
yr on their half-lives were derived, yielding substantially improved results
compared to previous experiments with Ge. A new result for the half-life
of the neutrino-accompanied decay of Ge with significantly
reduced uncertainties is also given, resulting in yr.Comment: 3 Figure
- …
