31 research outputs found
Evidence of Latitudinal Migration in Tri-colored Bats, Perimyotis subflavus
Background: Annual movements of tri-colored bats (Perimyotis subflavus) are poorly understood. While this species has been considered a regional migrant, some evidence suggests that it may undertake annual latitudinal migrations, similar to other long distance North American migratory bat species. Methodology/Principal Findings: We investigated migration in P. subflavus by conducting stable hydrogen isotope analyses of 184 museum specimen fur samples and comparing these results (dDfur) to published interpolated dD values of collection site growing season precipitation (dDprecip). Results suggest that the male molt period occurred between June 23 and October 16 and 33 % of males collected during the presumed non-molt period were south of their location of fur growth. For the same time period, 16 % of females were south of their location of fur growth and in general, had not travelled as far as migratory males. There were strong correlations between dDfur from the presumed molt period and both growing season dD precip (males – r 2 = 0.86; p,0.01; females – r 2 = 0.75; p,0.01), and latitude of collection (males – r 2 = 0.85; p,0.01; females – r 2 = 0.73; p,0.01). Most migrants were collected at the northern (.40uN; males and females) and southern (,35uN; males only) extents of the species ’ range. Conclusions/Significance: These results indicate a different pattern of migration for this species than previously documented, suggesting that some P. subflavus engage in annual latitudinal migrations and that migratory tendency varie
Compilação atualizada das espécies de morcegos (Chiroptera) para a Amazônia Brasileira
Phylogenetics and Phylogeography of the \u3ci\u3eArtibeus jamaicensis\u3c/i\u3e Complex Based on Cytochrome-\u3ci\u3eb\u3c/i\u3e DNA Sequences
The phylogenetics and phylogeography of the Jamaican fruit-eating bat (Artibeus jamaicensis) were examined based on analysis of DNA sequence variation in the mitochondrial cytochrome-b gene for 176 individuals representing all 13 subspecies of A. jamaicensis (sensu Simmons 2005). Results document that A. jamaicensis (sensu Simmons 2005) comprises 3 monophyletic assemblages that are separated phylogenetically by the presence of A. obscurus, A. lituratus, and . amplus. According to the mitochondrial DNA sequence variation, A. jamaicensis, A. schwartzi, and A. planirostris are appropriate species-level names for these lineages. Haplotypes identifiable as A. jamaicensis were absent east of the Andes Mountains in South America; haplotypes of A. schwartzi were documented throughout the Lesser Antilles and from northern Venezuela, and haplotypes of A. planirostris were identified east of the Andes Mountains in South America, north of the Orinoco River in Venezuela, and from the southern Lesser Antilles. Haplotypes of Artibeus jamaicensis, A. schwartzi, and A. planirostris were identified sympatrically on Carriacou, a small island in the southern Lesser Antilles that is ecologically monotypic. The magnitude of genetic divergence separating A. jamaicensis, A. planirostris, and A. schwartzi essentially equals the magnitude of genetic divergence distinguishing A. lituratus, A. obscurus, and A. jamaicensis. Studies of the nuclear genome will be required to understand the biological implications of these patterns in the mitochondrial genome
