77 research outputs found

    Microbiological and chemical assessment of wastewater discharged by infiltration trenches in fractured and karstified limestone (Sca.re.s. project 2019–2020)

    Get PDF
    This study investigated the environmental contamination of groundwater as a consequence of the discharge of treated wastewater into the soil. The investigation focused on a wastewater treatment plant located in an area fractured by karst in the Salento peninsula (Apulia, Italy). Water samples were collected at four sites (raw wastewater, treated wastewater, infiltration trench, and monitoring well), monthly from May to December 2019 (with the exception of August), and were tested for (1) panel of bacteria; (2) enteric viruses; and (3) chemical substances. A gradual reduction in the concentration of bacteria, viruses and contaminants of emerging concern was observed across the profile of soil fissured by karst. All monitored bacteria were absent from the monitoring well, except for Pseudomonas aeruginosa. Pepper mild mottle virus and adenovirus were detected at all sampling sites. Personal care products and X-ray contrast media showed the greatest decrease in concentration from infiltration trench to the monitoring well, while the highest residual concentrations in the monitoring well were found for anticonvulsants (78.5%), antimicrobials (41.3%), and antipsychotic drugs (38.6%). Our results show that parameters provided by current law may not always be sufficient to evaluate the sanitary risk relating to the discharge of treated wastewater to the soil

    Integration of chemical and biological oxidation in a SBBR for tannery wastewater treatment

    Full text link
    This paper reports the results of an investigation aimed at evaluating the laboratory-scale performance of an innovative process for treating tannery wastewater. In this process, biological degradation, carried out in a sequencing batch biofilm reactor (SBBR), is combined with chemical oxidation by ozone. Tannery wastewater treatment was carried out, at laboratory scale, on a real primary effluent coming from a centralised plant treating wastewater produced by a large tannery district in Northern Italy. SBBR performance both without and with ozonation, was assessed with very satisfactory results. In particular, in the latter instance the recorded COD, TKN and TSS average removals, (96%), (92%) and (98%) respectively, allowed the maximum allowable concentration values fixed by the Italian regulation in force to be achieved without any additional polishing step. During the investigation biofilm properties (biofilm concentration and biofilm density) and flow dynamics aspects (head loss, shear stress, bed porosity) were also studied. A major feature of the process is that, with or without ozonation, it was characterised by very low specific sludge production (0.05 kgVSS/kgCODremoved) and high biofilm density (i.e. 87-122 gVSS/Lsludge) both contributing to a rather high biofilm concentration (i.e. 31-44 gTSS/Lfilter).</jats:p

    Integrated biological and ozone treatment of printing textile wastewater

    No full text
    Textile effluents are among the most difficult industrial wastewaters to treat because of their compositional variability and of the presence of numerous different chemicals intentionally designed to resist degradation. Though biological technologies offer a cheaper and more environmental friendly alternative for the treatment of textile effluents, an additional step to remove recalcitrant compounds is still needed. Integrated biological and chemical treatment is a rather new approach that allows improving treatment performance and stability without increasing too much treatment costs. Ozone integration in a sequencing batch biofilter granular reactor was tested at laboratory scale for treating a printing wastewater characterized by high concentrations of surfactants and nitrogen. The process was optimized in terms of applied organic load and ozone dose. The results have shown that the process assures the possibility to comply with the limits for direct discharge for all investigated parameters by operating at an organic load value lower than 1.5 kg(COD)/m(3) d and with an ozone dose of 135 mg/l. A synergetic biological and chemical oxidation activity was observed with a ratio between ozone dose and COD removed lower than 0.75. Finally, the process was characterized by a sludge production as low as 0.17 kg(TSS)/kg(CODremoved) due to the high biomass concentration in the biological system used. (c) 2012 Elsevier B.V. All rights reserved
    corecore