4,466 research outputs found

    Physician Communication Skills: Results of a Survey of General/Family Practitioners in Newfoundland

    Get PDF
    Purpose: To describe the attitudes related to communication skills, confidence in using commnication skills, and use of communication skills during the physician-patient encounter among a population-based sample of family physicians. Procedures: A mailed survey, distributed to all family physicians and general practitioners currently practicing in Newfoundland. The questionnaire was designed to collect data in five general areas participant demographics, physician confidence in using specific communication strategies, perceived adequacy of time spent by physicians with their patients, physician use of specific communication strategies with the adult patients they saw in the prior week, and physician use of specific communication strategies during the closing minutes of the encounters they had with adult patients in the prior week. Main Findings: A total of 160 completed surveys was received from practicing family physicians/general practitioners in Newfoundland, yielding an adjusted response rate of 43.1%. Most of the respondents (83.8%) indicated their communication skills are as important as technical skills in terms of achieving positive patient outcomes. Between one-third and one-half of the respondents, depending on the educational level queried, rated their communications skills training as being inadequate. Fewer than 20% of the respondents rated the communications skills training they received as being excellent. Physicians indicated a need to improve their use of 8 of 13 specific communication strategies during patient encounters, and reported using few communication strategies during the closing minutes of the encounter. Interactions that occurred during a typical encounter tended to focus on biomedical versus psychosocial issues. Conclusions: Family physicians/general practitioners recognize a need to improve their commnications skills. Well-designed communications skills training programs should be implemented at multi-levels of physician training in order to improve patient satisfaction with their encounters with family/general practitioners, and to increase the likelihood of positive patient outcomes

    Crystallographic studies of the Escherichia coli quinol-fumarate reductase with inhibitors bound to the quinol-binding site

    Get PDF
    The quinol-fumarate reductase (QFR) respiratory complex of Escherichia coli is a four-subunit integral-membrane complex that catalyzes the final step of anaerobic respiration when fumarate is the terminal electron acceptor. The membrane-soluble redox-active molecule menaquinol (MQH(2)) transfers electrons to QFR by binding directly to the membrane-spanning region. The crystal structure of QFR contains two quinone species, presumably MQH(2), bound to the transmembrane-spanning region. The binding sites for the two quinone molecules are termed Q(P) and Q(D), indicating their positions proximal Q(P)) or distal (Q(D)) to the site of fumarate reduction in the hydrophilic flavoprotein and iron-sulfur protein subunits. It has not been established whether both of these sites are mechanistically significant. Co-crystallization studies of the E. coli QFR with the known quinol-binding site inhibitors 2-heptyl-4-hydroxyquinoline-N-oxide and 2-[1-(p-chlorophenyl)ethyl] 4,6-dinitrophenol establish that both inhibitors block the binding of MQH(2) at the Q(P) site. In the structures with the inhibitor bound at Q(P), no density is observed at Q(D), which suggests that the occupancy of this site can vary and argues against a structurally obligatory role for quinol binding to Q(D). A comparison of the Q(P) site of the E. coli enzyme with quinone-binding sites in other respiratory enzymes shows that an acidic residue is structurally conserved. This acidic residue, Glu-C29, in the E. coli enzyme may act as a proton shuttle from the quinol during enzyme turnover

    Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning

    Full text link
    Although aviation accidents are rare, safety incidents occur more frequently and require a careful analysis to detect and mitigate risks in a timely manner. Analyzing safety incidents using operational data and producing event-based explanations is invaluable to airline companies as well as to governing organizations such as the Federal Aviation Administration (FAA) in the United States. However, this task is challenging because of the complexity involved in mining multi-dimensional heterogeneous time series data, the lack of time-step-wise annotation of events in a flight, and the lack of scalable tools to perform analysis over a large number of events. In this work, we propose a precursor mining algorithm that identifies events in the multidimensional time series that are correlated with the safety incident. Precursors are valuable to systems health and safety monitoring and in explaining and forecasting safety incidents. Current methods suffer from poor scalability to high dimensional time series data and are inefficient in capturing temporal behavior. We propose an approach by combining multiple-instance learning (MIL) and deep recurrent neural networks (DRNN) to take advantage of MIL's ability to learn using weakly supervised data and DRNN's ability to model temporal behavior. We describe the algorithm, the data, the intuition behind taking a MIL approach, and a comparative analysis of the proposed algorithm with baseline models. We also discuss the application to a real-world aviation safety problem using data from a commercial airline company and discuss the model's abilities and shortcomings, with some final remarks about possible deployment directions

    Lattice-Boltzmann Method for Geophysical Plastic Flows

    Full text link
    We explore possible applications of the Lattice-Boltzmann Method for the simulation of geophysical flows. This fluid solver, while successful in other fields, is still rarely used for geotechnical applications. We show how the standard method can be modified to represent free-surface realization of mudflows, debris flows, and in general any plastic flow, through the implementation of a Bingham constitutive model. The chapter is completed by an example of a full-scale simulation of a plastic fluid flowing down an inclined channel and depositing on a flat surface. An application is given, where the fluid interacts with a vertical obstacle in the channel.Comment: in W. Wu, R.I. Borja (Edts.) Recent advances in modelling landslides and debris flow, Springer Series in Geomechanics and Geoengineering (2014), ISBN 978-3-319-11052-3, pp. 131-14

    Interpreting forest and grassland biome productivity utilizing nested scales of image resolution and biogeographical analysis

    Get PDF
    Several hardware, software, and data collection problems encountered were conquered. The Geographic Information System (GIS) data from other systems were converted to ERDAS format for incorporation with the image data. Statistical analysis of the relationship between spectral values and productivity is being pursued. Several project sites, including Jackson, Pope, Boulder, Smokies, and Huntington Forest are evolving as the most intensively studied areas, primarily due to availability of data and time. Progress with data acquisition and quality checking, more details on experimental sites, and brief summarizations of research results and future plans are discussed. Material on personnel, collaborators, facilities, site background, and meetings and publications of the investigators are included

    Avalanche Dynamics in Wet Granular Materials

    Full text link
    We have studied the dynamics of avalanching wet granular media in a rotating drum apparatus. Quantitative measurements of the flow velocity and the granular flux during avalanches allow us to characterize novel avalanche types unique to wet media. We also explore the details of viscoplastic flow (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity independent flow depth at high rotation rates and novel robust pattern formation in the granular surface.Comment: 5 pages, 3 figures in color, REVTeX4, for smaller pdfs see http://angel.elte.hu/~tegzes/condmat.htm

    Principles And Practices Fostering Inclusive Excellence: Lessons From The Howard Hughes Medical Institute’s Capstone Institutions

    Get PDF
    Best-practices pedagogy in science, technology, engineering, and mathematics (STEM) aims for inclusive excellence that fosters student persistence. This paper describes principles of inclusivity across 11 primarily undergraduate institutions designated as Capstone Awardees in Howard Hughes Medical Institute’s (HHMI) 2012 competition. The Capstones represent a range of institutional missions, student profiles, and geographical locations. Each successfully directed activities toward persistence of STEM students, especially those from traditionally underrepresented groups, through a set of common elements: mentoring programs to build community; research experiences to strengthen scientific skill/identity; attention to quantitative skills; and outreach/bridge programs to broaden the student pool. This paper grounds these program elements in learning theory, emphasizing their essential principles with examples of how they were implemented within institutional contexts. We also describe common assessment approaches that in many cases informed programming and created traction for stakeholder buy-in. The lessons learned from our shared experiences in pursuit of inclusive excellence, including the resources housed on our companion website, can inform others’ efforts to increase access to and persistence in STEM in higher education

    On Organization of Information: Approach and Early Work

    Get PDF
    In this report we describe an approach for organizing information for presentation and display. "e approach stems from the observation that there is a stepwise progression in the way signals (from the environment and the system under consideration) are extracted and transformed into data, and then analyzed and abstracted to form representations (e.g., indications and icons) on the user interface. In physical environments such as aerospace and process control, many system components and their corresponding data and information are interrelated (e.g., an increase in a chamber s temperature results in an increase in its pressure). "ese interrelationships, when presented clearly, allow users to understand linkages among system components and how they may affect one another. Organization of these interrelationships by means of an orderly structure provides for the so-called "big picture" that pilots, astronauts, and operators strive for

    Covariant quantization of infinite spin particle models, and higher order gauge theories

    Full text link
    Further properties of a recently proposed higher order infinite spin particle model are derived. Infinitely many classically equivalent but different Hamiltonian formulations are shown to exist. This leads to a condition of uniqueness in the quantization process. A consistent covariant quantization is shown to exist. Also a recently proposed supersymmetric version for half-odd integer spins is quantized. A general algorithm to derive gauge invariances of higher order Lagrangians is given and applied to the infinite spin particle model, and to a new higher order model for a spinning particle which is proposed here, as well as to a previously given higher order rigid particle model. The latter two models are also covariantly quantized.Comment: 38 pages, Late
    corecore