187 research outputs found
Bone and Cytokine Markers Associated With Bone Disease in Systemic Mastocytosis
Background
Mastocytosis encompasses a heterogeneous group of diseases characterized by tissue accumulation of clonal mast cells, which frequently includes bone involvement. Several cytokines have been shown to play a role in the pathogenesis of bone mass loss in systemic mastocytosis (SM), but their role in SM-associated osteosclerosis remains unknown.
Objective
To investigate the potential association between cytokine and bone remodeling markers with bone disease in SM, aiming at identifying biomarker profiles associated with bone loss and/or osteosclerosis.
Methods
A total of 120 adult patients with SM, divided into 3 age and sex-matched groups according to their bone status were studied: (1) healthy bone (n = 46), (2) significant bone loss (n = 47), and (3) diffuse bone sclerosis (n = 27). Plasma levels of cytokines and serum baseline tryptase and bone turnover marker levels were measured at diagnosis.
Results
Bone loss was associated with significantly higher levels of serum baseline tryptase (P = .01), IFN-γ (P = .05), IL-1β (P = .05), and IL-6 (P = .05) versus those found in patients with healthy bone. In contrast, patients with diffuse bone sclerosis showed significantly higher levels of serum baseline tryptase (P < .001), C-terminal telopeptide (P < .001), amino-terminal propeptide of type I procollagen (P < .001), osteocalcin (P < .001), bone alkaline phosphatase (P < .001), osteopontin (P < .01), and the C-C Motif Chemokine Ligand 5/RANTES chemokine (P = .01), together with lower IFN-γ (P = .03) and RANK-ligand (P = .04) plasma levels versus healthy bone cases.
Conclusions
SM with bone mass loss is associated with a proinflammatory cytokine profile in plasma, whereas diffuse bone sclerosis shows increased serum/plasma levels of biomarkers related to bone formation and turnover, in association with an immunosuppressive cytokine secretion profile.This study was supported by grants from the Instituto de Salud Carlos III (ISCIII, Spain) (PI19/01166, CIBERONC: CB16/12/00400) and Fondo Europeo de Desarrollo Regional (FEDER) (EQC2019-005419-P), within the Subprograma Estatal de Infraestructuras de Investigación y Equipamiento Científico Técnico de 2019 del Ministerio de Ciencia, Innovación y Universidades, Fundación Española de Mastocitosis (FEM, Madrid, Spain ref.: FEM2019-MAGPIX and FEM2021-SAM); Asociación Española de Mastocitosis y Enfermedades Relacionadas (AEDM-CTMC-2019). We also thank the Biobank at the Hospital Virgen de la Salud (BioB-HVS) No. B.0000520, Toledo, Spain. TAR was supported by the 2019 European Academy of Allergy and Clinical Immunology Research Fellowship award. We thank our patients for their willingness to participate in this study
Altered innate immune profile in blood of systemic mastocytosis patients
[Background]: Mast cells (MC) from systemic mastocytosis (SM) patients release MC mediators that lead to an altered microenvironment with potential consequences on innate immune cells, such as monocytes and dendritic cells (DC). Here we investigated the distribution and functional behaviour of different populations of blood monocytes and DC among distinct diagnostic subtypes of SM.
[Methods]: Overall, we studied 115 SM patients - 45 bone marrow mastocytosis (BMM), 61 indolent SM (ISM), 9 aggressive SM (ASM)- and 32 healthy donors (HD). Spontaneous and in vitro-stimulated cytokine production by blood monocytes, and their plasma levels, together with the distribution of different subsets of blood monocytes and DCs, were investigated.
[Results]: SM patients showed increased plasma levels and spontaneous production by blood monocytes of IL1β, IL6, IL8, TNFα and IL10, associated with an exhausted ability of LPS + IFNγ-stimulated blood monocytes to produce IL1β and TGFβ. SM (particularly ISM) patients also showed decreased counts of total monocytes, at the expense of intermediate monocytes and non-classical monocytes. Interestingly, while ISM and ASM patients had decreased numbers of plasmacytoid DC and myeloid DC (and their major subsets) in blood, an expansion of AXL+ DC was specifically encountered in BMM cases.
[Conclusion]: These results demonstrate an altered distribution of blood monocytes and DC subsets in SM associated with constitutive activation of functionally impaired blood monocytes and increased plasma levels of a wide variety of inflammatory cytokines, reflecting broad activation of the innate immune response in mastocytosis.This study has been funded by Instituto de Salud Carlos III (ISCIII) (grant number PI19/01166; and Centro de Investigación Biomédica en Red de Cáncer [CIBERONC] programme, grant number CB16/12/00400) and co-funded by the European Union (EU). We thank the support of the Spanish National DNA Bank Carlos III (www.bancoadn.org; biobank ID B.0000716; supported by ISCIII and co-founded by EU [grant number PT20/00085]) for providing plasma samples. APP was supported by a grant of the Government of Castilla y León (Orden EDU/556/2019), Spain; co-financed with the “European Regional Development Fund” (BDNS, Identif.:422058). We thank the support of the Spanish Association of Mastocytosis and Related Diseases
Comprehensive histopathological analysis of gastric cancer in European and Latin America populations reveals differences in PDL1, HER2, p53 and MUC6 expression
"Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.
Material and methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries. Formalin-fixed paraffin-embedded primary tumour endoscopic biopsy samples were collected and submitted for central morphological and immunohistochemical characterization and TP53 molecular assessment and Helicobacter pylori infection.
Results: A total of 259 patients were included in the study: 137 (53%) from LATAM and 122 (47%) from Europe. Significant biological differences were detected between European and LATAM patients. Low representation of chromosomal instability (CIN) and HER2 positive cases were found in LATAM. MUC6 and PD-L1 were more frequently overexpressed in European cases, showing a significant correlation across the entire study population, with this association being especially pronounced in MMRdeficient cases. Both TP53 mutation by next-generation sequencing and p53 immunohistochemical aberrant pattern were linked with features associated with chromosomal instability. No regional differences were observed in H. pylori prevalence or abundance, indicating that the afore mentioned variations cannot be attributed to this factor.
Conclusion: Our findings underscore a need for region-specific approaches in gastroesophageal cancer diagnosis and treatment. MUC6 emerges as a putative immune regulator that needs further investigation. Research tailored to the unique biological profiles in different global regions is crucial to effectively address the observed disparities."This study was funded by the European Union’s Horizon 2020 research and innovation program (Grant agreement No GA825832). The European Union was not involved in the collection, analysis and interpretation of data, in writing future manuscripts or in deciding to submit manuscripts for publication. This work was supported in Chile by ANID-FONDAP-152220002 & 15130011 (1523A0008), PROGRAMA ICM-ANID, ICN2021_045, and ANID FONDECYT 1220586. FONDECYT 1230504 (AR, GL, JCR) «Role of the genomic and microbiome profile in gastric carcinogenesis: prospective endoscopic follow-up», ANID FONDAP 152220002 (AR) «CECAN: Center for Cancer Prevention and Control”. The funding for Mexico was supported by CONAHCyTN°297681 (CELAC and European Consortium for Personalized Medicine Approach to Gastric Cancer (LEGACy)
Zeolites for CO2–CO–O2 Separation to Obtain CO2-Neutral Fuels
Carbon dioxide release has become an important global issue due to the significant and continuous rise in atmospheric CO2 concentrations and the depletion of carbon-based energy resources. Plasmolysis is a very energy-efficient process for reintroducing CO2 into energy and chemical cycles by converting CO2 into CO and O2 utilizing renewable electricity. The bottleneck of the process is that CO remains mixed with O2 and residual CO2. Therefore, efficient gas separation and recuperation are essential for obtaining pure CO, which, via water gas shift and Fischer–Tropsch reactions, can lead to the production of CO2-neutral fuels. The idea behind this work is to provide a separation mechanism based on zeolites to optimize the separation of carbon dioxide, carbon monoxide, and oxygen under mild operational conditions. To achieve this goal, we performed a thorough screening of available zeolites based on topology and adsorptive properties using molecular simulation and ideal adsorption solution theory. FAU, BRE, and MTW are identified as suitable topologies for these separation processes. FAU can be used for the separation of carbon dioxide from carbon monoxide and oxygen and BRE or MTW for the separation of carbon monoxide from oxygen. These results are reinforced by pressure swing adsorption simulations at room temperature combining adsorption columns with pure silica FAU zeolite and zeolite BRE at a Si/Al ratio of 3. These zeolites have the added advantage of being commercially available.</p
Evaluation of the WHO criteria for the classification of patients with mastocytosis
Diagnosis and classification of mastocytosis is currently based on the World Health Organization (WHO) criteria. Here, we evaluate the utility of the WHO criteria for the diagnosis and classification of a large series of mastocytosis patients (n=133), and propose a new algorithm that could be routinely applied for refined diagnosis and classification of the disease. Our results confirm the utility of the WHO criteria and provide evidence for the need of additional information for (1) a more precise diagnosis of mastocytosis, (2) specific identification of new forms of the disease, (3) the differential diagnosis between cutaneous mastocytosis vs systemic mastocytosis, and (4) improved distinction between indolent systemic mastocytosis and aggressive systemic mastocytosis. Based on our results, a new algorithm is proposed for a better diagnostic definition and prognostic classification of mastocytosis, as confirmed prospectively in an independent validation series of 117 mastocytosis patients.This work was supported by grants from the Fondo de Investigaciones Sanitarias (FIS) of the Ministerio de Ciencia e Innovación of Spain (PS09/00032 and RETICS RD06/0020/0035-FEDER); Junta de Comunidades de Castilla La Mancha (FISCAM 2007/36, FISCAM 2008/46). Junta de Castilla y León (Grant SAN1778/2009 and GR37); ACG-M is supported by a grant from FIS/FEDER (CP03/00035); CT was supported by a grant from the Fundaçcâo para a Ciência e Tecnologia (FCT) of Portugal (SFRH/BD/ 17545/2004) and by a grant from the Fondo de Investigaciones Sanitarias (FIS) of the Ministerio de Ciencia e Innovación of Spain (PI08/90881).Peer Reviewe
Histone deacetylase inhibition results in a common metabolic profile associated with HT29 differentiation
Cell differentiation is an orderly process that begins with modifications in gene expression. This process is regulated by the acetylation state of histones. Removal of the acetyl groups of histones by specific enzymes (histone deacetylases, HDAC) usually downregulates expression of genes that can cause cells to differentiate, and pharmacological inhibitors of these enzymes have been shown to induce differentiation in several colon cancer cell lines. Butyrate at high (mM) concentration is both a precursor for acetyl-CoA and a known HDAC inhibitor that induces cell differentiation in colon cells. The dual role of butyrate raises the question whether its effects on HT29 cell differentiation are due to butyrate metabolism or to its HDAC inhibitor activity. To distinguish between these two possibilities, we used a tracer-based metabolomics approach to compare the metabolic changes induced by two different types of HDAC inhibitors (butyrate and the non-metabolic agent trichostatin A) and those induced by other acetyl-CoA precursors that do not inhibit HDAC (caprylic and capric acids). [1,2-13C2]-d-glucose was used as a tracer and its redistribution among metabolic intermediates was measured to estimate the contribution of glycolysis, the pentose phosphate pathway and the Krebs cycle to the metabolic profile of HT29 cells under the different treatments. The results demonstrate that both HDAC inhibitors (trichostatin A and butyrate) induce a common metabolic profile that is associated with histone deacetylase inhibition and differentiation of HT29 cells whereas the metabolic effects of acetyl-CoA precursors are different from those of butyrate. The experimental findings support the concept of crosstalk between metabolic and cell signalling events, and provide an experimental approach for the rational design of new combined therapies that exploit the potential synergism between metabolic adaptation and cell differentiation processes through modification of HDAC activity
- …
