3,288 research outputs found
Scale space consistency of piecewise constant least squares estimators -- another look at the regressogram
We study the asymptotic behavior of piecewise constant least squares
regression estimates, when the number of partitions of the estimate is
penalized. We show that the estimator is consistent in the relevant metric if
the signal is in , the space of c\`{a}dl\`{a}g functions equipped
with the Skorokhod metric or equipped with the supremum metric.
Moreover, we consider the family of estimates under a varying smoothing
parameter, also called scale space. We prove convergence of the empirical scale
space towards its deterministic target.Comment: Published at http://dx.doi.org/10.1214/074921707000000274 in the IMS
Lecture Notes Monograph Series
(http://www.imstat.org/publications/lecnotes.htm) by the Institute of
Mathematical Statistics (http://www.imstat.org
Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging
We present the theory, design, and realization of a polarization-insensitive
metamaterial absorber for terahertz frequencies. We derive
geometrical-independent conditions for effective medium absorbers in general,
and for resonant metamaterials specically. Our fabricated design reaches and
absorptivity of 78% at 1.145 ThzComment: 6 Pages, 5 figures; figures update
Kolmogorov Similarity Hypotheses for Scalar Fields: Sampling Intermittent Turbulent Mixing in the Ocean and Galaxy
Kolmogorov's three universal similarity hypotheses are extrapolated to
describe scalar fields like temperature mixed by turbulence. By the analogous
Kolmogorov third hypothesis for scalars, temperature dissipation rates chi
averaged over lengths r > L_K should be lognormally distributed with
intermittency factors I that increase with increasing turbulence energy length
scales L_O as I_chi-r = m_T ln(L_O/r). Tests of Kolmogorovian velocity and
scalar universal similarity hypotheses for very large ranges of turbulence
length and time scales are provided by data from the ocean and the Galactic
interstellar medium. The universal constant for turbulent mixing intermittency
m_T is estimated from oceanic data to be 0.44+-0.01, which is remarkably close
to estimates for Kolmogorov's turbulence intermittency constant m_u of
0.45+-0.05 from Galactic as well as atmospheric data. Extreme intermittency
complicates the oceanic sampling problem, and may lead to quantitative and
qualitative undersampling errors in estimates of mean oceanic dissipation rates
and fluxes. Intermittency of turbulence and mixing in the interstellar medium
may be a factor in the formation of stars.Comment: 23 pages original of Proc. Roy. Soc. article, 8 figures; in
"Turbulence and Stochastic Processes: Kolmogorov's ideas 50 years on", London
The Royal Society, 1991, J.C.R. Hunt, O.M. Phillips, D. Williams Eds., pages
1-240, vol. 434 (no. 1890) Proc. Roy. Soc. Lond. A, PDF fil
On reconciling ground-based with spaceborne normalized radar cross section measurements
©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction coefficient increases
Molecular and biochemical characterization of a new thermostable bacterial laccase from<i> Meiothermus ruber</i> DSM 1279
A new bacterial laccase gene (mrlac) fromMeiothermus ruberDSM 1279 was successfully overexpressed to produce a laccase (Mrlac) in soluble form inEscherichia coliduring simultaneous overexpression of a chaperone protein (GroEL/ES).</p
Neuronal avalanches recorded in the awake and sleeping monkey do not show a power law but can be reproduced by a self-organized critical model
Poster presentation: Self-organized critical (SOC) systems are complex dynamical systems that may express cascades of events, called avalanches [1]. The SOC state was proposed to govern brain function, because of its activity fluctuations over many orders of magnitude, its sensitivity to small input and its long term stability [2,3]. In addition, the critical state is optimal for information storage and processing [4]. Both hallmark features of SOC systems, a power law distribution f(s) for the avalanche size s and a branching parameter (bp) of unity, were found for neuronal avalanches recorded in vitro [5]. However, recordings in vivo yielded contradictory results [6]. Electrophysiological recordings in vivo only cover a small fraction of the brain, while criticality analysis assumes that the complete system is sampled. We hypothesized that spatial subsampling might influence the observed avalanche statistics. In addition, SOC models can have different connectivity, but always show a power law for f(s) and bp = 1 when fully sampled. This may not be the case under subsampling, however. Here, we wanted to know whether a state change from awake to asleep could be modeled by changing the connectivity of a SOC model without leaving the critical state. We simulated a SOC model [1] and calculated f(s) and bp obtained from sampling only the activity of a set of 4 × 4 sites, representing the electrode positions in the cortex. We compared these results with results obtained from multielectrode recordings of local field potentials (LFP) in the cortex of behaving monkeys. We calculated f(s) and bp for the LFP activity recorded while the monkey was either awake or asleep and compared these results to results obtained from two subsampled SOC model with different connectivity. f(s) and bp were very similar for both the experiments and the subsampled SOC model, but in contrast to the fully sampled model, f(s) did not show a power law and bp was smaller than unity. With increasing the distance between the sampling sites, f(s) changed from "apparently supercritical" to "apparently subcritical" distributions in both the model and the LFP data. f(s) and bp calculated from LFP recorded during awake and asleep differed. These changes could be explained by altering the connectivity in the SOC model. Our results show that subsampling can prevent the observation of the characteristic power law and bp in SOC systems, and misclassifications of critical systems as sub- or supercritical are possible. In addition, a change in f(s) and bp for different states (awake/asleep) does not necessarily imply a change from criticality to sub- or supercriticality, but can also be explained by a change in the effective connectivity of the network without leaving the critical state
A Comparative Study of Aerocapture Missions with a Mars Destination
Conventional interplanetary spacecraft use propulsive systems to decelerate into orbit. Aerocapture is an alternative approach for orbit capture, in which the spacecraft makes a single pass through a target destination's atmosphere. Although this technique has never been performed, studies show there are substantial benefits of using aerocapture for reduction of propellant mass, spacecraft size, and mission cost. The In-Space Propulsion (ISP) Program, part of NASA's Science Mission Directorate, has invested in aerocapture technology development since 2002. Aerocapture investments within ISP are largely driven by mission systems analysis studies, The purpose of this NASA-funded report is to identify and document the fundamental parameters of aerocapture within previous human and robotic Mars mission studies which will assist the community in identifying technology research gaps in human and robotic missions, and provide insight for future technology investments. Upon examination of the final data set, some key attributes within the aerocapture disciplines are identified
Fiber-Based Measurement of Bow-Shock Spectra for Reentry Flight Testing
We demonstrated a fiber-based approach for obtaining optical spectra of a glowing bow shock in a high-enthalpy air flow. The work was performed in a ground test with the NASA Ames Aerodynamic Heating Facility (AHF) that is used for atmospheric reentry simulation. The method uses a commercial fiber optic that is embedded in the nose of an ablating bluntbody model and provides a line-of-sight view in the streamwise direction - directly upstream into the hot post-shock gas flow. Both phenolic impregnated carbon ablator (PICA) and phenolic carbon (PhenCarb 28) materials were used as thermal protection systems. Results show that the fibers survive the intense heat and operate sufficiently well during the first several seconds of a typical AHF run (20 MJ/kg). This approach allowed the acquisition of optical spectra, enabling a Boltzmann-based electronic excitation temperature measurement from Cu atom impurities (averaged over a line-of-sight through the gas cap, with a 0.04 sec integration time)
Transverse fluctuations of grafted polymers
We study the statistical mechanics of grafted polymers of arbitrary stiffness
in a two-dimensional embedding space with Monte Carlo simulations. The
probability distribution function of the free end is found to be highly
anisotropic and non-Gaussian for typical semiflexible polymers. The reduced
distribution in the transverse direction, a Gaussian in the stiff and flexible
limits, shows a double peak structure at intermediate stiffnesses. We also
explore the response to a transverse force applied at the polymer free end. We
identify F-Actin as an ideal benchmark for the effects discussed.Comment: 10 pages, 4 figures, submitted to Physical Review
- …
