8,936 research outputs found
Analysis of horizontal flows in the solar granulation
Solar limb observations sometimes reveal the presence of a satellite lobe in
the blue wing of the Stokes I profile from pixels belonging to granules. The
presence of this satellite lobe has been associated in the past to strong line
of sight gradients and, as the line of sight component is almost parallel to
the solar surface, to horizontal granular flows. We aim to increase the
knowledge about these horizontal flows studying a spectropolarimetric
observation of the north solar pole. We will make use of two state of the art
techniques, the spatial deconvolution procedure that increases the quality of
the data removing the stray light contamination, and spectropolarimetric
inversions that will provide the vertical stratification of the atmospheric
physical parameters where the observed spectral lines form. We inverted the
Stokes profiles using a two component configuration, obtaining that one
component is strongly blueshifted and displays a temperature enhancement at
upper photospheric layers while the second component has low redshifted
velocities and it is cool at upper layers. In addition, we examined a large
number of cases located at different heliocentric angles, finding smaller
velocities as we move from the centre to the edge of the granule. Moreover, the
height location of the enhancement on the temperature stratification of the
blueshifted component also evolves with the spatial location on the granule
being positioned on lower heights as we move to the periphery of the granular
structure.Comment: 8 pages, 6 figure
Numerical and experimental study of the effects of noise on the permutation entropy
We analyze the effects of noise on the permutation entropy of dynamical
systems. We take as numerical examples the logistic map and the R\"ossler
system. Upon varying the noise strengthfaster, we find a transition from an
almost-deterministic regime, where the permutation entropy grows slower than
linearly with the pattern dimension, to a noise-dominated regime, where the
permutation entropy grows faster than linearly with the pattern dimension. We
perform the same analysis on experimental time-series by considering the
stochastic spiking output of a semiconductor laser with optical feedback.
Because of the experimental conditions, the dynamics is found to be always in
the noise-dominated regime. Nevertheless, the analysis allows to detect
regularities of the underlying dynamics. By comparing the results of these
three different examples, we discuss the possibility of determining from a time
series whether the underlying dynamics is dominated by noise or not
A brief comment on the similarities of the IR solutions for the ghost propagator DSE in Landau and Coulomb gauges
This brief note is devoted to reconcile the conclusions from a recent
analysis of the IR solutions for the ghost propagator Dyson-Schwinger equations
in Coulomb gauge with previous studies in Landau gauge.Comment: 4 pages, 1 figur
AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study
Researchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites. © Published under licence by IOP Publishing Ltd
Temporal relation between quiet-Sun transverse fields and the strong flows detected by IMaX/SUNRISE
Localized strongly Doppler-shifted Stokes V signals were detected by
IMaX/SUNRISE. These signals are related to newly emerged magnetic loops that
are observed as linear polarization features. We aim to set constraints on the
physical nature and causes of these highly Doppler-shifted signals. In
particular, the temporal relation between the appearance of transverse fields
and the strong Doppler shifts is analyzed in some detail. We calculated the
time difference between the appearance of the strong flows and the linear
polarization. We also obtained the distances from the center of various
features to the nearest neutral lines and whether they overlap or not. These
distances were compared with those obtained from randomly distributed points on
observed magnetograms. Various cases of strong flows are described in some
detail. The linear polarization signals precede the appearance of the strong
flows by on average 84+-11 seconds. The strongly Doppler-shifted signals are
closer (0.19") to magnetic neutral lines than randomly distributed points
(0.5"). Eighty percent of the strongly Doppler-shifted signals are close to a
neutral line that is located between the emerging field and pre-existing
fields. That the remaining 20% do not show a close-by pre-existing field could
be explained by a lack of sensitivity or an unfavorable geometry of the
pre-existing field, for instance, a canopy-like structure. Transverse fields
occurred before the observation of the strong Doppler shifts. The process is
most naturally explained as the emergence of a granular-scale loop that first
gives rise to the linear polarization signals, interacts with pre-existing
fields (generating new neutral line configurations), and produces the observed
strong flows. This explanation is indicative of frequent small-scale
reconnection events in the quiet Sun.Comment: 11 pages, 8 figure
- …
