151 research outputs found

    Ab initio GW many-body effects in graphene

    Full text link
    We present an {\it ab initio} many-body GW calculation of the self-energy, the quasiparticle band plot and the spectral functions in free-standing undoped graphene. With respect to other approaches, we numerically take into account the full ionic and electronic structure of real graphene and we introduce electron-electron interaction and correlation effects from first principles. Both non-hermitian and also dynamical components of the self-energy are fully taken into account. With respect to DFT-LDA, the Fermi velocity is substantially renormalized and raised by a 17%, in better agreement with magnetotransport experiments. Furthermore, close to the Dirac point the linear dispersion is modified by the presence of a kink, as observed in ARPES experiments. Our calculations show that the kink is due to low-energy ππ\pi \to \pi^* single-particle excitations and to the π\pi plasmon. Finally, the GW self-energy does not open the band gap.Comment: 5 pages, 4 figures, 1 tabl

    Collective Flow and Mach Cones with Parton Transport

    Get PDF
    Fast thermalization and a strong build up of elliptic flow of QCD matter were investigated within the pQCD based 3+1 dimensional parton transport model BAMPS including bremsstrahlung 232 \leftrightarrow 3 processes. Within the same framework quenching of gluonic jets in Au+Au collisions at RHIC can be understood. The development of conical structure by gluonic jets is investigated in a static box for the regimes of small and large dissipation. Furthermore we demonstrate two different approaches to extract the shear viscosity coefficient η\eta from a microscopical picture.Comment: 7 pages, 8 figures, 1 table; to appear in the proceedings of Hot and Cold Baryonic Matter -- HCBM 201

    Collective Flow and Energy Loss with parton transport

    Get PDF
    Quenching of gluonic jets and heavy quark production in Au+Au collisions at RHIC can be understood within the pQCD based 3+1 dimensional parton transport model BAMPS including pQCD bremsstrahlung 232 \leftrightarrow 3 processes. Furthermore, the development of conical structures induced by gluonic jets is investigated in a static box for the regimes of small and large dissipation.Comment: typos corrected, figure labels enlarged; Talk given by C. Greiner; to appear in the proceedings of WISH201

    Anomalous Angular Dependence of the Dynamic Structure Factor near Bragg Reflections: Graphite

    Get PDF
    The electron energy-loss function of graphite is studied for momentum transfers q beyond the first Brillouin zone. We find that near Bragg reflections the spectra can change drastically for very small variations in q. The effect is investigated by means of first principle calculations in the random phase approximation and confirmed by inelastic x-ray scattering measurements of the dynamic structure factor S(q,\omega). We demonstrate that this effect is governed by crystal local field effects and the stacking of graphite. It is traced back to a strong coupling between excitations at small and large momentum transfers

    Extraction of shear viscosity in stationary states of relativistic particle systems

    Full text link
    Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η\eta. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η\eta for a pure gluonic system and find a good agreement with already published calculations.Comment: 17 pages, 7 figure

    Calculation of shear viscosity using Green-Kubo relations within a parton cascade

    Full text link
    The shear viscosity of a gluon gas is calculated using the Green-Kubo relation. Time correlations of the energy-momentum tensor in thermal equilibrium are extracted from microscopic simulations using a parton cascade solving various Boltzmann collision processes. We find that the pQCD based gluon bremsstrahlung described by Gunion-Bertsch processes significantly lowers the shear viscosity by a factor of 3-8 compared to elastic scatterings. The shear viscosity scales with the coupling as 1/(alpha_s^2\log(1/alpha_s)). For a constant coupling constant the shear viscosity to entropy density ratio has no dependence on temperature. Replacing the pQCD-based collision angle distribution of binary scatterings by an isotropic form decreases the shear viscosity by a factor of 3.Comment: 17 pages, 5 figure

    Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene

    Full text link
    We have measured a strictly linear pi-plasmon dispersion along the axis of individualized single wall carbon nanotubes, which is completely different from plasmon dispersions of graphite or bundled single wall carbon nanotubes. Comparative ab initio studies on graphene based systems allow us to reproduce the different dispersions. This suggests that individualized nanotubes provide viable experimental access to collective electronic excitations of graphene, and it validates the use of graphene to understand electronic excitations of carbon nanotubes. In particular, the calculations reveal that local field effects (LFE) cause a mixing of electronic transitions, including the 'Dirac cone', resulting in the observed linear dispersion

    The History of Policy in the Zande Scheme

    Get PDF

    Mach Cones in Viscous Matter

    Full text link
    Employing a microscopic transport model we investigate the evolution of high energetic jets moving through a viscous medium. For the scenario of an unstoppable jet we observe a clearly strong collective behavior for a low dissipative system η/s0.005\eta/s \approx 0.005, leading to the observation of cone-like structures. Increasing the dissipation of the system to η/s0.32\eta/s \approx 0.32 the Mach Cone structure vanishes. Furthermore, we investigate jet-associated particle correlations. A double-peak structure, as observed in experimental data, is even for low-dissipative systems not supported, because of the large influence of the head shock.Comment: 4 pages, 3 figures, to appear in the conference proceedings of Hot Quarks 201
    corecore