8,222 research outputs found

    Combustion system processes leading to corrosive deposits

    Get PDF
    Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon

    Prospects for improved Λc\Lambda_c branching fractions

    Full text link
    The experimental uncertainty on the branching fraction \b(\Lambda_c \to p K^- \pi^+) = (5.0 \pm 1.3)% has not decreased since 1998, despite a much larger data sample. Uncertainty in this quantity dominates that in many other quantities, including branching fractions of Λc\Lambda_c to other modes, branching fractions of bb-flavored baryons, and fragmentation fractions of charmed and bottom quarks. Here we advocate a lattice QCD calculation of the form factors in ΛcΛ+ν\Lambda_c \to \Lambda \ell^+ \nu_\ell (the case =e+\ell = e^+ is simpler as the mass of the lepton can be neglected). Such a calculation would yield an absolute prediction for the rate for ΛcΛ+ν\Lambda_c \to \Lambda \ell^+ \nu_\ell. When combined with the Λc\Lambda_c lifetime, it could provide a calibration for an improved set of Λc\Lambda_c branching fractions as long as the accuracy exceeds about 25%.Comment: 8 pages, 2 figures, version to be published in Phys.\ Rev.\

    Computer-aided learning and use of the internet

    Get PDF

    On the Mixing of the Scalar Mesons f0(1370)f_0(1370), f0(1500)f_0(1500) and f0(1710)f_0(1710)

    Full text link
    Based on a 3×33\times3 mass matrix describing the mixing of the scalar states f0(1370)f_0(1370), f0(1500)f_0(1500) and f0(1710)f_0(1710), the hadronic decays of the three states are investigated. Taking into account the two possible assumptions concerning the mass level order of the bare states N>=uuˉ+ddˉ>/2|N>=|u\bar{u}+d\bar{d}>/\sqrt{2}, S>=ssˉ>|S>=|s\bar{s}> and G>=gg>|G>=|gg> in the scalar sector, MG>MS>MNM_G > M_S > M_N and MG>MN>MSM_G > M_N > M_S, we obtain the glueball-quarkonia content of the three states by solving the unlinear equations. Some predictions about the decays of the three states in two cases are presented, which can provide a stringent consistency check of the two assumptions.Comment: revtex 10 pages, 1 eps figur

    Nonelastic nuclear reactions and accompanying gamma radiation

    Get PDF
    Several aspects of nonelastic nuclear reactions which proceed through the formation of a compound nucleus are dealt with. The full statistical model and the partial statistical model are described and computer programs based on these models are presented along with operating instructions and input and output for sample problems. A theoretical development of the expression for the reaction cross section for the hybrid case which involves a combination of the continuum aspects of the full statistical model with the discrete level aspects of the partial statistical model is presented. Cross sections for level excitation and gamma production by neutron inelastic scattering from the nuclei Al-27, Fe-56, Si-28, and Pb-208 are calculated and compared with avaliable experimental data

    Determining the Quark Mixing Matrix From CP-Violating Asymmetries

    Full text link
    If the Standard Model explanation of CP violation is correct, then measurements of CP-violating asymmetries in BB meson decays can in principle determine the entire quark mixing matrix.Comment: 8 pages (plain TeX), 1 figure (postscript file appended), DAPNIA/SPP 94-06, NSF-PT-94-2, UdeM-LPN-TH-94-18
    corecore