44,350 research outputs found
Nonlinear photon transport in a semiconductor waveguide-cavity system containing a single quantum dot: Anharmonic cavity-QED regime
We present a semiconductor master equation technique to study the
input/output characteristics of coherent photon transport in a semiconductor
waveguide-cavity system containing a single quantum dot. We use this approach
to investigate the effects of photon propagation and anharmonic cavity-QED for
various dot-cavity interaction strengths, including weakly-coupled,
intermediately-coupled, and strongly-coupled regimes. We demonstrate that for
mean photon numbers much less than 0.1, the commonly adopted weak excitation
(single quantum) approximation breaks down, even in the weak coupling regime.
As a measure of the anharmonic multiphoton-correlations, we compute the Fano
factor and the correlation error associated with making a semiclassical
approximation. We also explore the role of electron--acoustic-phonon scattering
and find that phonon-mediated scattering plays a qualitatively important role
on the light propagation characteristics. As an application of the theory, we
simulate a conditional phase gate at a phonon bath temperature of K in the
strong coupling regime.Comment: To appear in PR
Towards a grid-enabled simulation framework for nano-CMOS electronics
The electronics design industry is facing major challenges as transistors continue to decrease in size. The next generation of devices will be so small that the position of individual atoms will affect their behaviour. This will cause the transistors on a chip to have highly variable characteristics, which in turn will impact circuit and system design tools. The EPSRC project "Meeting the Design Challenges of Nano-CMOS Electronics" (Nana-CMOS) has been funded to explore this area. In this paper, we describe the distributed data-management and computing framework under development within Nano-CMOS. A key aspect of this framework is the need for robust and reliable security mechanisms that support distributed electronics design groups who wish to collaborate by sharing designs, simulations, workflows, datasets and computation resources. This paper presents the system design, and an early prototype of the project which has been useful in helping us to understand the benefits of such a grid infrastructure. In particular, we also present two typical use cases: user authentication, and execution of large-scale device simulations
Lambda hyperonic effect on the normal driplines
A generalized mass formula is used to calculate the neutron and proton drip
lines of normal and lambda hypernuclei treating non-strange and strange nuclei
on the same footing. Calculations suggest existence of several bound
hypernuclei whose normal cores are unbound. Addition of Lambda or,
Lambda-Lambda hyperon(s) to a normal nucleus is found to cause shifts of the
neutron and proton driplines from their conventional limits.Comment: 6 pages, 4 tables, 0 figur
Morphology of Amorphous Layers Ballistically Deposited on a Planar Substrate
We report numerical simulation of the deposition of spherical particles on a
planar surface, by ballistic, straight-line trajectory transport, and assuming
irreversible adhesion on contact with the surface or previously deposited
particles. Our data indicate that the deposit formed has a loosely layered
structure within few diameters from the surface. This structure can be
explained by a model of growth via chain formation. Away from the surface we
found evidence of a monotonic, power-law approach to the bulk density. Both
density and contact-statistics results suggest that the deposit formed is
sparse: the space-filling fraction is about 15%, and the average number of
contacts is 2. The morphology of the deposit both near the surface and in the
bulk seems to be a result of competition of screening and branching; nearly
half of all the spheres are either single-contact dangling ends, or branching
nodes with more than two contacts.Comment: 20 pages, TeX (plain
Dephasing of Mollow Triplet Sideband Emission of a Resonantly Driven Quantum Dot in a Microcavity
Detailed properties of resonance fluorescence from a single quantum dot in a
micropillar cavity are investigated, with particular focus on emission
coherence in dependence on optical driving field power and detuning.
Power-dependent series over a wide range could trace characteristic Mollow
triplet spectra with large Rabi splittings of GHz. In
particular, the effect of dephasing in terms of systematic spectral broadening
of the Mollow sidebands is observed as a strong fingerprint
of excitation-induced dephasing. Our results are in excellent agreement with
predictions of a recently presented model on phonon-dressed QD Mollow triplet
emission in the cavity-QED regime
Phonon-dressed Mollow triplet in the regime of cavity-QED
We study the resonance fluorescence spectra of a driven quantum dot placed
inside a high semiconductor cavity and interacting with an acoustic phonon
bath. The dynamics is calculated using a time-convolutionless master equation
obtained in the polaron frame. We demonstrate pronounced spectral broadening of
the Mollow sidebands through cavity-emission which, for small cavity-coupling
rates, increases quadratically with the Rabi frequency. However, for larger
cavity coupling rates, this broadening dependence is found to be more complex.
This field-dependent Mollow triplet broadening is primarily a consequence of
the triplet peaks sampling different parts of the asymmetric phonon bath, and
agrees directly with recent experiments with semiconductor micropillars. The
influence from the detuned cavity photon bath and multi-photon effects is shown
to play a qualitatively important role on the fluorescence spectra.Comment: 4 pages, 4 figure
Integrating security solutions to support nanoCMOS electronics research
The UK Engineering and Physical Sciences Research Council (EPSRC) funded Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is developing a research infrastructure for collaborative electronics research across multiple institutions in the UK with especially strong industrial and commercial involvement. Unlike other domains, the electronics industry is driven by the necessity of protecting the intellectual property of the data, designs and software associated with next generation electronics devices and therefore requires fine-grained security. Similarly, the project also demands seamless access to large scale high performance compute resources for atomic scale device simulations and the capability to manage the hundreds of thousands of files and the metadata associated with these simulations. Within this context, the project has explored a wide range of authentication and authorization infrastructures facilitating compute resource access and providing fine-grained security over numerous distributed file stores and files. We conclude that no single security solution meets the needs of the project. This paper describes the experiences of applying X.509-based certificates and public key infrastructures, VOMS, PERMIS, Kerberos and the Internet2 Shibboleth technologies for nanoCMOS security. We outline how we are integrating these solutions to provide a complete end-end security framework meeting the demands of the nanoCMOS electronics domain
Meeting the design challenges of nano-CMOS electronics: an introduction to an upcoming EPSRC pilot project
The years of ‘happy scaling’ are over and the fundamental challenges that the semiconductor industry faces, at both technology and device level, will impinge deeply upon the design of future integrated circuits and systems. This paper provides an introduction to these challenges and gives an overview of the Grid infrastructure that will be developed as part of a recently funded EPSRC pilot project to address them, and we hope, which will revolutionise the electronics design industry
Looking for the Charged Higgs Boson
This review article starts with a brief introduction to the charged Higgs
boson (H^\pm) in the Minimal Supersymmetric Standard Model (MSSM). It then
discusses the prospects of a relatively light H^\pm boson search via top quark
decay at Tevatron/LHC, and finally a heavy H^\pm boson search at LHC. The
viable channels for H^\pm search are identified in both the cases, with
particular emphasis on the H^\pm --> tau + nu decay channel. The effects of NLO
QCD correction in the SM as well as the MSSM are discussed briefly.Comment: 17 pages with 8 eps figures, Invited review, Reference adde
- …
