6,317 research outputs found

    Fuel Injector: Air swirl characterization aerothermal modeling, phase 2, volume 2

    Get PDF
    A well integrated experimental/analytical investigation was conducted to provide benchmark quality data relevant to prefilming type airblast fuel nozzle and its interaction with combustor dome air swirler. The experimental investigation included a systematic study of both single-phase flows that involved single and twin co-axial jets with and without swirl. A two-component Phase Doppler Particle Analyzer (PDPA) equipment was used to document the interaction of single and co-axial air jets with glass beads that simulate nonevaporating spray and simultaneously avoid the complexities associated with fuel atomization processes and attendant issues about the specification of relevant boundary conditions. The interaction of jets with methanol spray produced by practical airblast nozzle was also documented in the spatial domain of practical interest. Model assessment activities included the use of three turbulence models (k-epsilon, algebraic second moment (ASM) and differential second moment (DSM)) for the carrier phase, deterministic or stochastic Lagrangian treatment of the dispersed phase, and advanced numerical schemes. Although qualitatively good comparison with data was obtained for most of the cases investigated, the model deficiencies in regard to modeled dissipation rate transport equation, single length scale, pressure-strain correlation, and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to analytically design combustion systems

    Common Learning

    Get PDF
    Consider two agents who learn the value of an unknown parameter by observing a sequence of private signals. The signals are independent and identically distributed across time but not necessarily across agents. We show that that when each agent's signal space is finite, the agents will commonly learn its value, i.e., that the true value of the parameter will become approximate common-knowledge. In contrast, if the agents' observations come from a countably infinite signal space, then this contraction mapping property fails. We show by example that common learning can fail in this case.Common learning, common belief, private signals, private beliefs

    Probing confined phonon modes by transport through a nanowire double quantum dot

    Full text link
    Strong radial confinement in semiconductor nanowires leads to modified electronic and phononic energy spectra. We analyze the current response to the interplay between quantum confinement effects of the electron and phonon systems in a gate-defined double quantum dot in a semiconductor nanowire. We show that current spectroscopy of inelastic transitions between the two quantum dots can be used as an experimental probe of the confined phonon environment. The resulting discrete peak structure in the measurements is explained by theoretical modeling of the confined phonon mode spectrum, where the piezoelectric coupling is of crucial importance.Comment: 4 pages, 4 figures; final versio

    Imaging a 1-electron InAs quantum dot in an InAs/InP nanowire

    Full text link
    Nanowire heterostructures define high-quality few-electron quantum dots for nanoelectronics, spintronics and quantum information processing. We use a cooled scanning probe microscope (SPM) to image and control an InAs quantum dot in an InAs/InP nanowire, using the tip as a movable gate. Images of dot conductance vs. tip position at T = 4.2 K show concentric rings as electrons are added, starting with the first electron. The SPM can locate a dot along a nanowire and individually tune its charge, abilities that will be very useful for the control of coupled nanowire dots

    Common Learning

    Get PDF
    Consider two agents who learn the value of an unknown parameter by observing a sequence of private signals. The signals are independent and identically distributed across time but not necessarily across agents. We show that that when each agent's signal space is finite, the agents will commonly learn its value, i.e., that the true value of the parameter will become approximate common-knowledge. In contrast, if the agents' observations come from a countably infinite signal space, then this contraction mapping property fails. We show by example that common learning can fail in this case.Common learning, Common belief, Private signals, Private beliefs

    Direct Measurement of the Spin-Orbit Interaction in a Two-Electron InAs Nanowire Quantum Dot

    Full text link
    We demonstrate control of the electron number down to the last electron in tunable few-electron quantum dots defined in catalytically grown InAs nanowires. Using low temperature transport spectroscopy in the Coulomb blockade regime we propose a simple method to directly determine the magnitude of the spin-orbit interaction in a two-electron artificial atom with strong spin-orbit coupling. Due to a large effective g-factor |g*|=8+/-1 the transition from singlet S to triplet T+ groundstate with increasing magnetic field is dominated by the Zeeman energy rather than by orbital effects. We find that the spin-orbit coupling mixes the T+ and S states and thus induces an avoided crossing with magnitude ΔSO\Delta_{SO}=0.25+/-0.05 meV. This allows us to calculate the spin-orbit length λSO\lambda_{SO}\approx127 nm in such systems using a simple model.Comment: 21 pages, 7 figures, including supplementary note

    Enhanced Zeeman splitting in Ga0.25In0.75As quantum point contacts

    Full text link
    The strength of the Zeeman splitting induced by an applied magnetic field is an important factor for the realization of spin-resolved transport in mesoscopic devices. We measure the Zeeman splitting for a quantum point contact etched into a Ga0.25In0.75As quantum well, with the field oriented parallel to the transport direction. We observe an enhancement of the Lande g-factor from |g*|=3.8 +/- 0.2 for the third subband to |g*|=5.8 +/- 0.6 for the first subband, six times larger than in GaAs. We report subband spacings in excess of 10 meV, which facilitates quantum transport at higher temperatures.Comment: [Version 2] Revtex4, 11 pages, 3 figures, accepted for publication in Applied Physics Letter

    Common Learning with Intertemporal Dependence

    Get PDF
    Consider two agents who learn the value of an unknown parameter by observing a sequence of private signals. Will the agents commonly learn the value of the parameter, i.e., will the true value of the parameter become approximate common-knowledge? If the signals are independent and identically distributed across time (but not necessarily across agents), the answer is yes (Cripps, Ely, Mailath, and Samuelson, 2008). This paper explores the implications of allowing the signals to be dependent over time. We present a counterexample showing that even extremely simple time dependence can preclude common learning, and present sufficient conditions for common learning.Common learning, common belief, private signals, private beliefs

    Test of a Jastrow-type wavefunction for a trapped few-body system in one dimension

    Full text link
    For a system with interacting quantum mechanical particles in a one-dimensional harmonic oscillator, a trial wavefunction with simple structure based on the solution of the corresponding two-particle system is suggested and tested numerically. With the inclusion of a scaling parameter for the distance between particles, at least for the very small systems tested here the ansatz gives a very good estimate of the ground state energy, with the error being of the order of ~1% of the gap to the first excited state
    corecore