6,317 research outputs found
Fuel Injector: Air swirl characterization aerothermal modeling, phase 2, volume 2
A well integrated experimental/analytical investigation was conducted to provide benchmark quality data relevant to prefilming type airblast fuel nozzle and its interaction with combustor dome air swirler. The experimental investigation included a systematic study of both single-phase flows that involved single and twin co-axial jets with and without swirl. A two-component Phase Doppler Particle Analyzer (PDPA) equipment was used to document the interaction of single and co-axial air jets with glass beads that simulate nonevaporating spray and simultaneously avoid the complexities associated with fuel atomization processes and attendant issues about the specification of relevant boundary conditions. The interaction of jets with methanol spray produced by practical airblast nozzle was also documented in the spatial domain of practical interest. Model assessment activities included the use of three turbulence models (k-epsilon, algebraic second moment (ASM) and differential second moment (DSM)) for the carrier phase, deterministic or stochastic Lagrangian treatment of the dispersed phase, and advanced numerical schemes. Although qualitatively good comparison with data was obtained for most of the cases investigated, the model deficiencies in regard to modeled dissipation rate transport equation, single length scale, pressure-strain correlation, and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to analytically design combustion systems
Common Learning
Consider two agents who learn the value of an unknown parameter by observing a sequence of private signals. The signals are independent and identically distributed across time but not necessarily across agents. We show that that when each agent's signal space is finite, the agents will commonly learn its value, i.e., that the true value of the parameter will become approximate common-knowledge. In contrast, if the agents' observations come from a countably infinite signal space, then this contraction mapping property fails. We show by example that common learning can fail in this case.Common learning, common belief, private signals, private beliefs
Probing confined phonon modes by transport through a nanowire double quantum dot
Strong radial confinement in semiconductor nanowires leads to modified
electronic and phononic energy spectra. We analyze the current response to the
interplay between quantum confinement effects of the electron and phonon
systems in a gate-defined double quantum dot in a semiconductor nanowire. We
show that current spectroscopy of inelastic transitions between the two quantum
dots can be used as an experimental probe of the confined phonon environment.
The resulting discrete peak structure in the measurements is explained by
theoretical modeling of the confined phonon mode spectrum, where the
piezoelectric coupling is of crucial importance.Comment: 4 pages, 4 figures; final versio
Imaging a 1-electron InAs quantum dot in an InAs/InP nanowire
Nanowire heterostructures define high-quality few-electron quantum dots for
nanoelectronics, spintronics and quantum information processing. We use a
cooled scanning probe microscope (SPM) to image and control an InAs quantum dot
in an InAs/InP nanowire, using the tip as a movable gate. Images of dot
conductance vs. tip position at T = 4.2 K show concentric rings as electrons
are added, starting with the first electron. The SPM can locate a dot along a
nanowire and individually tune its charge, abilities that will be very useful
for the control of coupled nanowire dots
Common Learning
Consider two agents who learn the value of an unknown parameter by observing a sequence of private signals. The signals are independent and identically distributed across time but not necessarily across agents. We show that that when each agent's signal space is finite, the agents will commonly learn its value, i.e., that the true value of the parameter will become approximate common-knowledge. In contrast, if the agents' observations come from a countably infinite signal space, then this contraction mapping property fails. We show by example that common learning can fail in this case.Common learning, Common belief, Private signals, Private beliefs
Direct Measurement of the Spin-Orbit Interaction in a Two-Electron InAs Nanowire Quantum Dot
We demonstrate control of the electron number down to the last electron in
tunable few-electron quantum dots defined in catalytically grown InAs
nanowires. Using low temperature transport spectroscopy in the Coulomb blockade
regime we propose a simple method to directly determine the magnitude of the
spin-orbit interaction in a two-electron artificial atom with strong spin-orbit
coupling. Due to a large effective g-factor |g*|=8+/-1 the transition from
singlet S to triplet T+ groundstate with increasing magnetic field is dominated
by the Zeeman energy rather than by orbital effects. We find that the
spin-orbit coupling mixes the T+ and S states and thus induces an avoided
crossing with magnitude =0.25+/-0.05 meV. This allows us to
calculate the spin-orbit length 127 nm in such systems
using a simple model.Comment: 21 pages, 7 figures, including supplementary note
Enhanced Zeeman splitting in Ga0.25In0.75As quantum point contacts
The strength of the Zeeman splitting induced by an applied magnetic field is
an important factor for the realization of spin-resolved transport in
mesoscopic devices. We measure the Zeeman splitting for a quantum point contact
etched into a Ga0.25In0.75As quantum well, with the field oriented parallel to
the transport direction. We observe an enhancement of the Lande g-factor from
|g*|=3.8 +/- 0.2 for the third subband to |g*|=5.8 +/- 0.6 for the first
subband, six times larger than in GaAs. We report subband spacings in excess of
10 meV, which facilitates quantum transport at higher temperatures.Comment: [Version 2] Revtex4, 11 pages, 3 figures, accepted for publication in
Applied Physics Letter
Common Learning with Intertemporal Dependence
Consider two agents who learn the value of an unknown parameter by observing a sequence of private signals. Will the agents commonly learn the value of the parameter, i.e., will the true value of the parameter become approximate common-knowledge? If the signals are independent and identically distributed across time (but not necessarily across agents), the answer is yes (Cripps, Ely, Mailath, and Samuelson, 2008). This paper explores the implications of allowing the signals to be dependent over time. We present a counterexample showing that even extremely simple time dependence can preclude common learning, and present sufficient conditions for common learning.Common learning, common belief, private signals, private beliefs
Test of a Jastrow-type wavefunction for a trapped few-body system in one dimension
For a system with interacting quantum mechanical particles in a
one-dimensional harmonic oscillator, a trial wavefunction with simple structure
based on the solution of the corresponding two-particle system is suggested and
tested numerically. With the inclusion of a scaling parameter for the distance
between particles, at least for the very small systems tested here the ansatz
gives a very good estimate of the ground state energy, with the error being of
the order of ~1% of the gap to the first excited state
- …
