1,363 research outputs found

    Changes in neuropsychological functioning following temporal lobectomy in patients with temporal lobe epilepsy

    Get PDF
    Purpose: This study was conducted to evaluate the changes in neuropsychological functioning in patients with temporal lobe epilepsy (TLE) after temporal lobe resection. Methods: Fifty-four TLE patients were evaluated before and after surgery using comprehensive neuropsychological tests to assess general intelligence, executive functioning, language, verbal and visual memory, working memory, visuo-spatial ability, attention and motor function. Results: The patients with left TLE showed no impairment of neuropsychological functioning after surgery, with the exception of auditory immediate memory. Furthermore, they showed significant improvement in performance IQ, executive function, working memory, visual memory, attention and psychomotor speed. The patients with right TLE did not show any significant impairment in post-operative neuropsychological functioning. They showed improvements in intellectual and executive functions, language, visual memory, visuo-spatial ability, attention and motor function post-operatively. The patients with hippocampal sclerosis showed greater post-operative improvements than the patients without hippocampal sclerosis regardless of the side. Patients with better pre-operative neuropsychological function had a higher chance of successfully discontinuing all seizure medications after surgery. Discussion: The results of this study suggest that temporal lobectomy does not harm the neuropsychological functioning of patients with intractable TLE and that it improves cognitive functions of the contralateral hemisphere. © 2009 W. S. Maney & Son Ltd

    Core-shell nanoparticle arrays double the strength of steel

    Get PDF
    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material's strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties. ?The Author(s) 2017.1116Ysciescopu

    Measuring Temperature Gradients over Nanometer Length Scales

    Full text link
    When a quantum dot is subjected to a thermal gradient, the temperature of electrons entering the dot can be determined from the dot's thermocurrent if the conductance spectrum and background temperature are known. We demonstrate this technique by measuring the temperature difference across a 15 nm quantum dot embedded in a nanowire. This technique can be used when the dot's energy states are separated by many kT and will enable future quantitative investigations of electron-phonon interaction, nonlinear thermoelectric effects, and the effciency of thermoelectric energy conversion in quantum dots.Comment: 6 pages, 5 figure

    Theory of biopolymer stretching at high forces

    Full text link
    We provide a unified theory for the high force elasticity of biopolymers solely in terms of the persistence length, ξp\xi_p, and the monomer spacing, aa. When the force f>\fh \sim k_BT\xi_p/a^2 the biopolymers behave as Freely Jointed Chains (FJCs) while in the range \fl \sim k_BT/\xi_p < f < \fh the Worm-like Chain (WLC) is a better model. We show that ξp\xi_p can be estimated from the force extension curve (FEC) at the extension x1/2x\approx 1/2 (normalized by the contour length of the biopolymer). After validating the theory using simulations, we provide a quantitative analysis of the FECs for a diverse set of biopolymers (dsDNA, ssRNA, ssDNA, polysaccharides, and unstructured PEVK domain of titin) for x1/2x \ge 1/2. The success of a specific polymer model (FJC or WLC) to describe the FEC of a given biopolymer is naturally explained by the theory. Only by probing the response of biopolymers over a wide range of forces can the ff-dependent elasticity be fully described.Comment: 20 pages, 4 figure

    New insights into electron spin dynamics in the presence of correlated noise

    Full text link
    The changes of the spin depolarization length in zinc-blende semiconductors when an external component of correlated noise is added to a static driving electric field are analyzed for different values of field strength, noise amplitude and correlation time. Electron dynamics is simulated by a Monte Carlo procedure which keeps into account all the possible scattering phenomena of the hot electrons in the medium and includes the evolution of spin polarization. Spin depolarization is studied by examinating the decay of the initial spin polarization of the conduction electrons through the D'yakonov-Perel process, the only relevant relaxation mechanism in III-V crystals. Our results show that, for electric field amplitude lower than the Gunn field, the dephasing length shortens with the increasing of the noise intensity. Moreover, a nonmonotonic behavior of spin depolarization length with the noise correlation time is found, characterized by a maximum variation for values of noise correlation time comparable with the dephasing time. Instead, in high field conditions, we find that, critically depending on the noise correlation time, external fluctuations can positively affect the relaxation length. The influence of the inclusion of the electron-electron scattering mechanism is also shown and discussed.Comment: Published on "Journal of Physics: Condensed Matter" as "Fast Track Communications", 11 pages, 9 figure

    Study of Thermal Properties of Graphene-Based Structures Using the Force Constant Method

    Full text link
    The thermal properties of graphene-based materials are theoretically investigated. The fourth-nearest neighbor force constant method for phonon properties is used in conjunction with both the Landauer ballistic and the non-equilibrium Green's function techniques for transport. Ballistic phonon transport is investigated for different structures including graphene, graphene antidot lattices, and graphene nanoribbons. We demonstrate that this particular methodology is suitable for robust and efficient investigation of phonon transport in graphene-based devices. This methodology is especially useful for investigations of thermoelectric and heat transport applications.Comment: 23 pages, 9 figures, 1 tabl

    Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy

    Full text link
    The thermal expansion coefficient (TEC) of single-layer graphene is estimated with temperature-dependent Raman spectroscopy in the temperature range between 200 and 400 K. It is found to be strongly dependent on temperature but remains negative in the whole temperature range, with a room temperature value of -8.0x10^{-6} K^{-1}. The strain caused by the TEC mismatch between graphene and the substrate plays a crucial role in determining the physical properties of graphene, and hence its effect must be accounted for in the interpretation of experimental data taken at cryogenic or elevated temperatures.Comment: 17 pagese, 3 figures, and supporting information (4 pages, 3 figures); Nano Letters, 201

    Screening of suitable cationic dopants for solar absorber material CZTS/Se: A first principles study

    Get PDF
    The earth abundant and non-toxic solar absorber material kesterite Cu2ZnSn(S/Se)(4) has been studied to achieve high power conversion efficiency beyond various limitations, such as secondary phases, antisite defects, band gap adjustment and microstructure. To alleviate these hurdles, we employed screening based approach to find suitable cationic dopant that can promote the current density and the theoretical maximum upper limit of the energy conversion efficiency (P(%)) of CZTS/Se solar devices. For this task, the hybrid functional (Heyd, Scuseria and Ernzerhof, HSE06) were used to study the electronic and optical properties of cation (Al, Sb, Ga, Ba) doped CZTS/Se. Our in-depth investigation reveals that the Sb atom is suitable dopant of CZTS/CZTSe and also it has comparable bulk modulus as of pure material. The optical absorption coefficient of Sb doped CZTS/Se is considerably larger than the pure materials because of easy formation of visible range exciton due to the presence of defect state below the Fermi level, which leads to an increase in the current density and P(%). Our results demonstrate that the lower formation energy, preferable energy gap and excellent optical absorption of the Sb doped CZTS/Se make it potential component for relatively high efficient solar cells

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
    corecore