686 research outputs found

    γ5\gamma_{5} in FDH

    Full text link
    We investigate the regularization-scheme dependent treatment of γ5\gamma_{5} in the framework of dimensional regularization, mainly focusing on the four-dimensional helicity scheme (FDH). Evaluating distinctive examples, we find that for one-loop calculations, the recently proposed four-dimensional formulation (FDF) of the FDH scheme constitutes a viable and efficient alternative compared to more traditional approaches. In addition, we extend the considerations to the two-loop level and compute the pseudo-scalar form factors of quarks and gluons in FDH. We provide the necessary operator renormalization and discuss at a practical level how the complexity of intermediate calculational steps can be reduced in an efficient way.Comment: 28 pages, 7 figure

    Small-mass effects in heavy-to-light form factors

    Get PDF
    We present the heavy-to-light form factors with two different non-vanishing masses at next-to-next-to-leading order and study its expansion in the small mass. The leading term of this small-mass expansion leads to a factorized expression for the form factor. The presence of a second mass results in a new feature, in that the soft contribution develops a factorization anomaly. This cancels with the corresponding anomaly in the collinear contribution. With the generalized factorization presented here, it is possible to obtain the leading small-mass terms for processes with large masses, such as muon-electron scattering, from the corresponding massless amplitude and the soft contribution.Comment: 20 pages, 4 figures, 1 ancillary file, published versio

    Selection of provenances to adapt tropical pine forestry to climate change on the basis of climate analogs

    Get PDF
    Pinus patula and Pinus tecunumanii play an important role in the forestry sector in the tropics and subtropics and, in recent decades, members of the International Tree Breeding and Conservation Program (Camcore) at North Carolina State University have established large, multi-site provenance trials for these pine species. The data collected in these trials provide valuable information about species and provenance choice for plantation establishment in many regions with different climates. Since climate is changing rapidly, it may become increasingly difficult to choose the right species and provenance to plant. In this study, growth performance of plantings in Colombia, Brazil and South Africa was correlated to the degree of climatic dissimilarity between planting sites. Results are used to assess the suitability of seed material under a changing climate for four P. patula provenances and six P. tecunumanii provenances. For each provenance, climate dissimilarities based on standardized Euclidean distances were calculated and statistically related to growth performances. We evaluated the two methods of quantifying climate dissimilarity with extensive field data based on the goodness of fit and statistical significance of the climate distance relation to differences in height growth. The best method was then used as a predictor of a provenance change in height growth. The provenance-specific models were used to predict provenance performance under different climate change scenarios. The developed provenance-specific models were able to significantly relate climate similarity to different growth performances for five out of six P. tecunumanii provenances. For P. patula provenances, we did not find any correlation. Results point towards the importance of the identification of sites with stable climates where high yields are achievable. In such sites, fast-growing P. tecunumanii provenances with a high but narrow growth optimum can be planted. At sites with climate change of uncertain direction and magnitude, the choice of P. patula provenances, with greater tolerance towards different temperature and precipitation regimes, is recommended. Our results indicate that the analysis of provenance trial data with climate similarity models helps us to (1) maintain plantation productivity in a rapidly changing environment; and (2) improve our understanding of tree species’ adaptation to a changing climate

    Measuring the W-t-b Interaction at the ILC

    Full text link
    The large top quark mass suggests that the top plays a pivotal role in Electroweak symmetry-breaking dynamics and, as a result, may have modified couplings to Electroweak bosons. Hadron colliders can provide measurements of these couplings at the ~10% level, and one of the early expected triumphs of the International Linear Collider is to reduce these uncertainties to the per cent level. In this article, we propose the first direct measurement of the Standard Model W-t-b coupling at the ILC, from measurements of t tbar-like signals below the t tbar production threshold. We estimate that the ILC with 100 fb^{-1} can measure a combination of the coupling and top width to high precision, and when combined with a direct measurement of the top width from the above-threshold scan, results in a model-independent measurement of the W-t-b interaction of the order of ~ 3%

    Welcome to EICS 2016

    Get PDF
    [Extract] The ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS) is a yearly international conference devoted to engineering usable and reliable interactive computing systems. Research presented at EICS revolves around methods, processes, techniques and tools that support specifying, designing, developing, deploying and verifying interactive systems. This 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS'16) took place in Brussels, Belgium (21-24 June 2016) – at the heart of Europe...info:eu-repo/semantics/publishedVersio

    Multi-jet cross sections in deep inelastic scattering at next-to-leading order

    Full text link
    We present the perturbative prediction for three-jet production cross section in DIS at the NLO accuracy. We study the dependence on the renormalization and factorization scales of exclusive three-jet cross section. The perturbative prediction for the three-jet differential distribution as a function of the momentum transfer is compared to the corresponding data obtained by the H1 collaboration at HERA.Comment: 5 pages, 3 figure

    To dd, or not to dd: Recent developments and comparisons of regularization schemes

    Get PDF
    We give an introduction to several regularization schemes that deal with ultraviolet and infrared singularities appearing in higher-order computations in quantum field theories. Comparing the computation of simple quantities in the various schemes, we point out similarities and differences between them.Comment: 61 pages, 12 figures; version sent to EPJC, references update

    Higgs production with large transverse momentum in hadronic collisions at next-to-leading order

    Get PDF
    Inclusive associated production of a light Higgs boson (m_H < m_t) with one jet in pp collisions is studied in next-to-leading order QCD. Transverse momentum (p_T < 30 GeV) and rapidity distributions of the Higgs boson are calculated for the LHC in the large top-quark mass limit. It is pointed out that, as much as in the case of inclusive Higgs production, the K-factor of this process is large (~1.6) and depends weakly on the kinematics in a wide range of transverse momentum and rapidity intervals. Our result confirms previous suggestions that the production channel p+p -> H+jet -> gamma+gamma+jet gives a measurable signal for Higgs production at the LHC in the mass range 100-140 GeV, crucial also for the ultimate test of the Minimal Supersymmetric Standard Model.Comment: 7 pages, 3 eps figures include

    Automation of one-loop QCD corrections

    Get PDF
    We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.Comment: 64 pages, 12 figures. Corrected the value of m_Z in table 1. In table 2, corrected the values of cross sections in a.4 and a.5 (previously computed with mu=mtop/2 rather than mu=mtop/4). In table 2, corrected the values of NLO cross sections in b.3, b.6, c.3, and e.7 (the symmetry factor for a few virtual channels was incorrect). In sect. A.4.3, the labeling of the four-momenta was incorrec
    corecore