485 research outputs found
The shift team formation problem in multi-shift manufacturing operations
This paper addresses the problem of assigning operators to teams that work in single-, two-, or three-day shift systems. The problem was motivated by, and illustrated with a case situation encountered in Dutch manufacturing industry. The problem addressed forms an extension of cell formation problems which are currently in the phase of addressing labor-related issues in cell design. A generalized goal problem formulation is presented to address multiple, conflicting objectives covering cross-training of workers, ensuring adequate levels of labor flexibility and minimizing labor-related costs. The proposed solution procedure consists of two phases. In the first phase, shift systems, in which applicable machines and the sizes of each shift team are identified. The next phase deals with assignment of operators to various teams and identification of specific cross-training needs for various workers. This phase involves the use of interactive goal programming. The methodology is illustrated by details from the case situation as well as a numerical example.
Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles
Patterns of regeneration and burial of phosphorus (P) in the Baltic Sea are strongly dependent on redox conditions. Redox varies spatially along water depth gradients and temporally in response to the seasonal cycle and multidecadal hydrographic variability. Alongside the well-documented link between iron oxyhydroxide dissolution and release of P from Baltic Sea sediments, we show that preferential remineralization of P with respect to carbon (C) and nitrogen (N) during degradation of organic matter plays a key role in determining the surplus of bioavailable P in the water column. Preferential remineralization of P takes place both in the water column and upper sediments and its rate is shown to be redox-dependent, increasing as reducing conditions become more severe at greater water-depth in the deep basins. Existing Redfield-based biogeochemical models of the Baltic may therefore underestimate the imbalance between N and P availability for primary production, and hence the vulnerability of the Baltic to sustained eutrophication via the fixation of atmospheric N. However, burial of organic P is also shown to increase during multidecadal intervals of expanded hypoxia, due to higher net burial rates of organic matter around the margins of the deep basins. Such intervals may be characterized by basin-scale acceleration of all fluxes within the P cycle, including productivity, regeneration and burial, sustained by the relative accessibility of the water column P pool beneath a shallow halocline
A socio-technical approach for the design of a production control system:towards controllable production units
Effects of external nutrient sources and extreme weather events on the nutrient budget of a Southern European coastal lagoon
The seasonal and annual nitrogen (N), phosphorus (P), and carbon (C) budgets of the mesotidal Ria Formosa lagoon, southern Portugal, were estimated to reveal the main inputs and outputs, the seasonal patterns, and how they may influence the ecological functioning of the system. The effects of extreme weather events such as long-lasting strong winds causing upwelling and strong rainfall were assessed. External nutrient inputs were quantified; ocean exchange was assessed in 24-h sampling campaigns, and final calculations were made using a hydrodynamic model of the lagoon. Rain and stream inputs were the main freshwater sources to the lagoon. However, wastewater treatment plant and groundwater discharges dominated nutrient input, together accounting for 98, 96, and 88 % of total C, N, and P input, respectively. Organic matter and nutrients were continuously exported to the ocean. This pattern was reversed following extreme events, such as strong winds in early summer that caused upwelling and after a period of heavy rainfall in late autumn. A principal component analysis (PCA) revealed that ammonium and organic N and C exchange were positively associated with temperature as opposed to pH and nitrate. These variables reflected mostly the benthic lagoon metabolism, whereas particulate P exchange was correlated to Chl a, indicating that this was more related to phytoplankton dynamics. The increase of stochastic events, as expected in climate change scenarios, may have strong effects on the ecological functioning of coastal lagoons, altering the C and nutrient budgets.Portuguese Science and Technology Foundation (FCT) [POCI/MAR/58427/2004, PPCDT/MAR/58427/2004]; Portuguese Science and Technology Foundation (FCT
Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition
International audienceSilicon (Si), in the form of dissolved silicate (DSi), is a key nutrient in marine and continental ecosystems. DSi is taken up by organisms to produce structural elements (e.g., shells and phytoliths) composed of amorphous biogenic silica (bSiO(2)). A global mass balance model of the biologically active part of the modern Si cycle is derived on the basis of a systematic review of existing data regarding terrestrial and oceanic production fluxes, reservoir sizes, and residence times for DSi and bSiO(2). The model demonstrates the high sensitivity of biogeochemical Si cycling in the coastal zone to anthropogenic pressures, such as river damming and global temperature rise. As a result, further significant changes in the production and recycling of bSiO(2) in the coastal zone are to be expected over the course of this century
Динаміка мітотичної активності клітин меристеми хвої модрини західної (Larix occidentalis Nutt.)
У результаті дослідження динаміки мітотичної активності клітин меристеми хвої модрини західної (Larix occidentalis Nutt.) визначено, що максимальна кількість клітин, які діляться, припадає на ранкові години доби (6 – 9 години). Графік динаміки має двовершинний характер з піками о 7-ій та о 9-ій годинах ранку.В результате исследований динамики митотической активности клеток меристемы хвои лиственницы западной (Larix occidentalis) установлено, что максимальное количество делящихся клеток обнаруживается в утренние часы суток (6 – 9 часов). График динамики имеет двухвершинный тип с пиками в 7 и 9 часов утра.Results of researches for dynamics of mitotic activity of merystem cells of Western larch (Larix occidentalis Nutt.) needles show, that maximal amount of divided cells was found out at 6 – 9 o'clock in the morning. The graph of dynamics has bimodal type with the peaks at 7 and at 9 o'clock in the morning
Abstracts of papers presented at an international workshop on management of soilborne pathogens sponsored by the United States-Israel binational agricultural research and development fund (bard): March 1-5,1998 Ramat Rachel, Jerusalem, Israel
- …
