814 research outputs found

    Chromospheric activity, lithium and radial velocities of single late-type stars possible members of young moving groups

    Get PDF
    We present here high resolution echelle spectra taken during three observing runs of 14 single late-type stars identified in our previous studies (Montes et al. 2001b, hereafter Paper I) as possible members of different young stellar kinematic groups (Local Association (20 - 150 Myr), Ursa Major group (300 Myr), Hyades supercluster (600 Myr), and IC 2391 supercluster (35 Myr)). Radial velocities have been determined by cross correlation with radial velocity standard stars and used together with precise measurements of proper motions and parallaxes taken from Hipparcos and Tycho-2 Catalogues, to calculate Galactic space motions (U, V, W) and to apply Eggen's kinematic criteria. The chromospheric activity level of these stars have been analysed using the information provided for several optical spectroscopic features (from the Ca II H & K to Ca II IRT lines) that are formed at different heights in the chromosphere. The Li I 6707.8 AA line equivalent width (EW) has been determined and compared in the EW(Li I) versus spectral type diagram with the EW(Li I) of stars members of well known young open clusters of different ages, in order to obtain an age estimation. All these data allow us to analyse in more detail the membership of these stars in the different young stellar kinematic groups. Using both kinematic and spectroscopic criteria we have confirmed PW And, V368 Cep, V383 Lac, EP Eri, DX Leo, HD 77407, and EK Dra as members of the Local Association and V834 Tau, pi^{1} UMa, and GJ 503.2 as members of the Ursa Major group. A clear rotation-activity dependence has been found in these stars.Comment: Latex file with 19 pages, 7 figures tar'ed gzip'ed. Full postscript (text, figures and tables) available at http://www.ucm.es/info/Astrof/p_skg_stars_I_fv.ps.gz Accepted for publication in: Astronomy & Astrophysics (A&A

    CD-ROM publication of the Mars digital cartographic data base

    Get PDF
    The recently completed Mars mosaicked digital image model (MDIM) and the soon-to-be-completed Mars digital terrain model (DTM) are being transcribed to optical disks to simplify distribution to planetary investigators. These models, completed in FY 1991, provide a cartographic base to which all existing Mars data can be registered. The digital image map of Mars is a cartographic extension of a set of compact disk read-only memory (CD-ROM) volumes containing individual Viking Orbiter images now being released. The data in these volumes are pristine in the sense that they were processed only to the extent required to view them as images. They contain the artifacts and the radiometric, geometric, and photometric characteristics of the raw data transmitted by the spacecraft. This new set of volumes, on the other hand, contains cartographic compilations made by processing the raw images to reduce radiometric and geometric distortions and to form geodetically controlled MDIM's. It also contains digitized versions of an airbrushed map of Mars as well as a listing of all feature names approved by the International Astronomical Union. In addition, special geodetic and photogrammetric processing has been performed to derive rasters of topographic data, or DTM's. The latter have a format similar to that of MDIM, except that elevation values are used in the array instead of image brightness values. The set consists of seven volumes: (1) Vastitas Borealis Region of Mars; (2) Xanthe Terra of Mars; (3) Amazonis Planitia Region of Mars; (4) Elysium Planitia Region of Mars; (5) Arabia Terra of Mars; (6) Planum Australe Region of Mars; and (7) a digital topographic map of Mars

    The surface of Mars 1. Cratered terrains

    Get PDF
    Mariner 6 and 7 pictures show that craters are the dominant landform on Mars and that their occurrence is not correlated uniquely with latitude, elevation, or albedo markings. Two distinct morphological classes are recognized: small bowl-shaped and large flat-bottomed. The former show little evidence of modifications, whereas the latter appear generally more modified than lunar upland craters of comparable size. A regional maria/uplands dichotomy like the moon has not yet been recognized on Mars. Crater modification on Mars has involved much greater horizontal redistribution of material than in the lunar uplands. It is possible that there are erosional processes only infrequently active. Analysis of the natures and fluxes of bodies that have probably impacted the moon and Mars leads to the likelihood that most of the large flat-bottomed craters on Mars have survived from the final phases of planetary accretion. Significant crater modification, however, has taken place more recently on Mars. Inasmuch as the present small bowl-shaped craters evidence little modification, the postaccretion crater-modification process on Mars may have been primarily episodic rather than continuous. The size-frequency distribution of impacting bodies that produced the present small Martian bowl-shaped craters differs from that responsible for post-mare primary impacts on the moon by a marked deficiency of large bodies. Survival of crater topography from the end of planetary accretion would make any hypothetical earthlike phase with primitive oceans there unlikely. The traditional view of Mars as an earthlike planetary neighbor in terms of its surface history is not supported by the picture data

    Magnetic Activity Cycles in the Exoplanet Host Star epsilon Eridani

    Full text link
    The active K2 dwarf epsilon Eri has been extensively characterized, both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3 year magnetic activity cycle in epsilon Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3 year and 13 year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3 year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95+/-0.03 years and 12.7+/-0.3 years, which by analogy with the solar case suggests a revised identification of the dynamo mechanisms that are responsible for the so-called "active" and "inactive" sequences as proposed by Bohm-Vitense. Finally, based on the observed properties of epsilon Eri we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.Comment: 6 pages, 3 figures, 1 table, ApJ Letters (accepted

    The surface of Mars 3. Light and dark markings

    Get PDF
    The Mariner 6 and 7 pictures have provided significant clues to the nature of the light and dark markings on Mars, but do not yet provide an adequate foundation for any complete explanation of the phenomena. They display detail never before seen or photographed and demonstrate that there is no network of dark lines (i.e. canals) on the planet. A variety of shapes and of boundaries between major markings are recorded in the pictures. No substantial correlation of albedo markings with cratered or chaotic terrain has been recognized; featureless terrain conceivably may be genetically related to light areas. Within and surrounding the dark area Meridiani Sinus there is evidence of local topographic control of albedo markings; light material is found in locally low areas. Also, characteristic patterns of local albedo markings are exhibited by craters there. Aeolian transportation of light material with deposition locally in low areas is suggested as an explanation of these markings and may be useful as a working hypothesis for subsequent exploration. Across some light/dark boundaries crater morphologies are unchanged; across others craters in the light area appear smoother. If there is a relationship between cratered terrain modification and surface albedo it is an indirect one

    New Rotation Periods in the Open Cluster NGC 1039 (M 34), and a Derivation of its Gyrochronology Age

    Full text link
    Employing photometric rotation periods for solar-type stars in NGC 1039 [M 34], a young, nearby open cluster, we use its mass-dependent rotation period distribution to derive the cluster's age in a distance independent way, i.e., the so-called gyrochronology method. We present an analysis of 55 new rotation periods,using light curves derived from differential photometry, for solar type stars in M 34. We also exploit the results of a recently-completed, standardized, homogeneous BVIc CCD survey of the cluster in order to establish photometric cluster membership and assign B-V colours to each photometric variable. We describe a methodology for establishing the gyrochronology age for an ensemble of solar-type stars. Empirical relations between rotation period, photometric colour and stellar age (gyrochronology) are used to determine the age of M 34. Based on its position in a colour-period diagram, each M 34 member is designated as being either a solid-body rotator (interface or I-star), a differentially rotating star (convective or C-star) or an object which is in some transitory state in between the two (gap or g-star). Fitting the period and photometric colour of each I-sequence star in the cluster, we derive the cluster's mean gyrochronology age. 47/55 of the photometric variables lie along the loci of the cluster main sequence in V/B-V and V/V-I space. We are further able to confirm kinematic membership of the cluster for half of the periodic variables [21/55], employing results from an on-going radial velocity survey of the cluster. For each cluster member identified as an I-sequence object in the colour-period diagram, we derive its individual gyrochronology age, where the mean gyro age of M 34 is found to be 193 +/- 9 Myr, formally consistent (within the errors) with that derived using several distance-dependent, photometric isochrone methods (250 +/- 67 Myr).Comment: accepted for publication in Astronomy & Astrophysic

    Stellar Hydrodynamics in Radiative Regions

    Full text link
    We present an analysis of the response of a radiative region to waves generated by a convective region of the star; this wave treatment of the classical problem of ``overshooting'' gives extra mixing relative to the treatment traditionally used in stellar evolutionary codes. The interface between convectively stable and unstable regions is dynamic and nonspherical, so that the nonturbulent material is driven into motion, even in the absence of ``penetrative overshoot.'' These motions may be described by the theory of nonspherical stellar pulsations, and are related to motion measured by helioseismology. Multi-dimensional numerical simulations of convective flow show puzzling features which we explain by this simplified physical model. Gravity waves generated at the interface are dissipated, resulting in slow circulation and mixing seen outside the formal convection zone. The approach may be extended to deal with rotation and composition gradients. Tests of this description in the stellar evolution code TYCHO produce carbon stars on the asymptotic giant branch (AGB), an isochrone age for the Hyades and three young clusters with lithium depletion ages from brown dwarfs, and lithium and beryllium depletion consistent with observations of the Hyades and Pleiades, all without tuning parameters. The insight into the different contributions of rotational and hydrodynamic mixing processes could have important implications for realistic simulation of supernovae and other questions in stellar evolution.Comment: 27 pages, 5 figures, accepted to the Astrophysical Journa

    A spectroscopy study of nearby late-type stars, possible members of stellar kinematic groups

    Get PDF
    Nearby late-type stars are excellent targets for seeking young objects in stellar associations and moving groups. The origin of these structures is still misunderstood, and lists of moving group members often change with time and also from author to author. Most members of these groups have been identified by means of kinematic criteria, leading to an important contamination of previous lists by old field stars. We attempt to identify unambiguous moving group members among a sample of nearby-late type stars by studying their kinematics, lithium abundance, chromospheric activity, and other age-related properties. High-resolution echelle spectra (R57000R \sim 57000) of a sample of nearby late-type stars are used to derive accurate radial velocities that are combined with the precise Hipparcos parallaxes and proper motions to compute galactic-spatial velocity components. Stars are classified as possible members of the classical moving groups according to their kinematics. The spectra are also used to study several age-related properties for young late-type stars, i.e., the equivalent width of the lithium Li~{\sc i} \space 6707.8 \space \AA \space line or the RHKR'_{\rm HK} index. Additional information like X-ray fluxes from the ROSAT All-Sky Survey or the presence of debris discs is also taken into account. The different age estimators are compared and the moving group membership of the kinematically selected candidates are discussed. From a total list of 405 nearby stars, 102 have been classified as moving group candidates according to their kinematics. i.e., only \sim 25.2 \% of the sample. The number reduces when age estimates are considered, and only 26 moving group candidates (25.5\% of the 102 candidates) have ages in agreement with the star having the same age as an MG memberComment: 39 pages, 11 figures. Accepted for publication in Astronomy \& Astrophysic

    Li abundance/surface activity connections in solar-type Pleiades

    Get PDF
    The relation between the lithium abundance, <i>A<sub>Li</sub></i>, and photospheric activity of solar-type Pleiads is investigated for the first time via acquisition and analysis of B and V-band data. Predictions of activity levels of target stars were made according to the <i>A<sub>Li</sub></i>/ (B-V) relation and then compared with new CCD photometric measurements. Six sources behaved according to the predictions while one star (HII 676), with low predicted activity, exhibited the largest variability of the study; another star (HII 3197), with high predicted activity, was surprisingly quiet. Two stars displayed non-periodic fadings, this being symptomatic of orbiting disk-like structures with irregular density distributions. Although the observation windows were not ideal for rotational period detection, some periodograms provided possible values; the light-curve obtained for HII 1532 is consistent with that previously recorded
    corecore