814 research outputs found
Chromospheric activity, lithium and radial velocities of single late-type stars possible members of young moving groups
We present here high resolution echelle spectra taken during three observing
runs of 14 single late-type stars identified in our previous studies (Montes et
al. 2001b, hereafter Paper I) as possible members of different young stellar
kinematic groups (Local Association (20 - 150 Myr), Ursa Major group (300 Myr),
Hyades supercluster (600 Myr), and IC 2391 supercluster (35 Myr)). Radial
velocities have been determined by cross correlation with radial velocity
standard stars and used together with precise measurements of proper motions
and parallaxes taken from Hipparcos and Tycho-2 Catalogues, to calculate
Galactic space motions (U, V, W) and to apply Eggen's kinematic criteria. The
chromospheric activity level of these stars have been analysed using the
information provided for several optical spectroscopic features (from the Ca II
H & K to Ca II IRT lines) that are formed at different heights in the
chromosphere. The Li I 6707.8 AA line equivalent width (EW) has been determined
and compared in the EW(Li I) versus spectral type diagram with the EW(Li I) of
stars members of well known young open clusters of different ages, in order to
obtain an age estimation. All these data allow us to analyse in more detail the
membership of these stars in the different young stellar kinematic groups.
Using both kinematic and spectroscopic criteria we have confirmed PW And, V368
Cep, V383 Lac, EP Eri, DX Leo, HD 77407, and EK Dra as members of the Local
Association and V834 Tau, pi^{1} UMa, and GJ 503.2 as members of the Ursa Major
group. A clear rotation-activity dependence has been found in these stars.Comment: Latex file with 19 pages, 7 figures tar'ed gzip'ed. Full postscript
(text, figures and tables) available at
http://www.ucm.es/info/Astrof/p_skg_stars_I_fv.ps.gz Accepted for publication
in: Astronomy & Astrophysics (A&A
CD-ROM publication of the Mars digital cartographic data base
The recently completed Mars mosaicked digital image model (MDIM) and the soon-to-be-completed Mars digital terrain model (DTM) are being transcribed to optical disks to simplify distribution to planetary investigators. These models, completed in FY 1991, provide a cartographic base to which all existing Mars data can be registered. The digital image map of Mars is a cartographic extension of a set of compact disk read-only memory (CD-ROM) volumes containing individual Viking Orbiter images now being released. The data in these volumes are pristine in the sense that they were processed only to the extent required to view them as images. They contain the artifacts and the radiometric, geometric, and photometric characteristics of the raw data transmitted by the spacecraft. This new set of volumes, on the other hand, contains cartographic compilations made by processing the raw images to reduce radiometric and geometric distortions and to form geodetically controlled MDIM's. It also contains digitized versions of an airbrushed map of Mars as well as a listing of all feature names approved by the International Astronomical Union. In addition, special geodetic and photogrammetric processing has been performed to derive rasters of topographic data, or DTM's. The latter have a format similar to that of MDIM, except that elevation values are used in the array instead of image brightness values. The set consists of seven volumes: (1) Vastitas Borealis Region of Mars; (2) Xanthe Terra of Mars; (3) Amazonis Planitia Region of Mars; (4) Elysium Planitia Region of Mars; (5) Arabia Terra of Mars; (6) Planum Australe Region of Mars; and (7) a digital topographic map of Mars
The surface of Mars 1. Cratered terrains
Mariner 6 and 7 pictures show that craters are the dominant landform on Mars and that their occurrence is not correlated uniquely with latitude, elevation, or albedo markings. Two distinct morphological classes are recognized: small bowl-shaped and large flat-bottomed. The former show little evidence of modifications, whereas the latter appear generally more modified than lunar upland craters of comparable size. A regional maria/uplands dichotomy like the moon has not yet been recognized on Mars. Crater modification on Mars has involved much greater horizontal redistribution of material than in the lunar uplands. It is possible that there are erosional processes only infrequently active. Analysis of the natures and fluxes of bodies that have probably impacted the moon and Mars leads to the likelihood that most of the large flat-bottomed craters on Mars have survived from the final phases of planetary accretion. Significant crater modification, however, has taken place more recently on Mars. Inasmuch as the present small bowl-shaped craters evidence little modification, the postaccretion crater-modification process on Mars may have been primarily episodic rather than continuous. The size-frequency distribution of impacting bodies that produced the present small Martian bowl-shaped craters differs from that responsible for post-mare primary impacts on the moon by a marked deficiency of large bodies. Survival of crater topography from the end of planetary accretion would make any hypothetical earthlike phase with primitive oceans there unlikely. The traditional view of Mars as an earthlike planetary neighbor in terms of its surface history is not supported by the picture data
Magnetic Activity Cycles in the Exoplanet Host Star epsilon Eridani
The active K2 dwarf epsilon Eri has been extensively characterized, both as a
young solar analog and more recently as an exoplanet host star. As one of the
nearest and brightest stars in the sky, it provides an unparalleled opportunity
to constrain stellar dynamo theory beyond the Sun. We confirm and document the
3 year magnetic activity cycle in epsilon Eri originally reported by Hatzes and
coworkers, and we examine the archival data from previous observations spanning
45 years. The data show coexisting 3 year and 13 year periods leading into a
broad activity minimum that resembles a Maunder minimum-like state, followed by
the resurgence of a coherent 3 year cycle. The nearly continuous activity
record suggests the simultaneous operation of two stellar dynamos with cycle
periods of 2.95+/-0.03 years and 12.7+/-0.3 years, which by analogy with the
solar case suggests a revised identification of the dynamo mechanisms that are
responsible for the so-called "active" and "inactive" sequences as proposed by
Bohm-Vitense. Finally, based on the observed properties of epsilon Eri we argue
that the rotational history of the Sun is what makes it an outlier in the
context of magnetic cycles observed in other stars (as also suggested by its Li
depletion), and that a Jovian-mass companion cannot be the universal
explanation for the solar peculiarities.Comment: 6 pages, 3 figures, 1 table, ApJ Letters (accepted
The surface of Mars 3. Light and dark markings
The Mariner 6 and 7 pictures have provided significant clues to the nature of the light and dark markings on Mars, but do not yet provide an adequate foundation for any complete explanation of the phenomena. They display detail never before seen or photographed and demonstrate that there is no network of dark lines (i.e. canals) on the planet. A variety of shapes and of boundaries between major markings are recorded in the pictures. No substantial correlation of albedo markings with cratered or chaotic terrain has been recognized; featureless terrain conceivably may be genetically related to light areas. Within and surrounding the dark area Meridiani Sinus there is evidence of local topographic control of albedo markings; light material is found in locally low areas. Also, characteristic patterns of local albedo markings are exhibited by craters there. Aeolian transportation of light material with deposition locally in low areas is suggested as an explanation of these markings and may be useful as a working hypothesis for subsequent exploration. Across some light/dark boundaries crater morphologies are unchanged; across others craters in the light area appear smoother. If there is a relationship between cratered terrain modification and surface albedo it is an indirect one
New Rotation Periods in the Open Cluster NGC 1039 (M 34), and a Derivation of its Gyrochronology Age
Employing photometric rotation periods for solar-type stars in NGC 1039 [M
34], a young, nearby open cluster, we use its mass-dependent rotation period
distribution to derive the cluster's age in a distance independent way, i.e.,
the so-called gyrochronology method. We present an analysis of 55 new rotation
periods,using light curves derived from differential photometry, for solar type
stars in M 34. We also exploit the results of a recently-completed,
standardized, homogeneous BVIc CCD survey of the cluster in order to establish
photometric cluster membership and assign B-V colours to each photometric
variable. We describe a methodology for establishing the gyrochronology age for
an ensemble of solar-type stars. Empirical relations between rotation period,
photometric colour and stellar age (gyrochronology) are used to determine the
age of M 34. Based on its position in a colour-period diagram, each M 34 member
is designated as being either a solid-body rotator (interface or I-star), a
differentially rotating star (convective or C-star) or an object which is in
some transitory state in between the two (gap or g-star). Fitting the period
and photometric colour of each I-sequence star in the cluster, we derive the
cluster's mean gyrochronology age.
47/55 of the photometric variables lie along the loci of the cluster main
sequence in V/B-V and V/V-I space. We are further able to confirm kinematic
membership of the cluster for half of the periodic variables [21/55], employing
results from an on-going radial velocity survey of the cluster. For each
cluster member identified as an I-sequence object in the colour-period diagram,
we derive its individual gyrochronology age, where the mean gyro age of M 34 is
found to be 193 +/- 9 Myr, formally consistent (within the errors) with that
derived using several distance-dependent, photometric isochrone methods (250
+/- 67 Myr).Comment: accepted for publication in Astronomy & Astrophysic
Stellar Hydrodynamics in Radiative Regions
We present an analysis of the response of a radiative region to waves
generated by a convective region of the star; this wave treatment of the
classical problem of ``overshooting'' gives extra mixing relative to the
treatment traditionally used in stellar evolutionary codes. The interface
between convectively stable and unstable regions is dynamic and nonspherical,
so that the nonturbulent material is driven into motion, even in the absence of
``penetrative overshoot.'' These motions may be described by the theory of
nonspherical stellar pulsations, and are related to motion measured by
helioseismology. Multi-dimensional numerical simulations of convective flow
show puzzling features which we explain by this simplified physical model.
Gravity waves generated at the interface are dissipated, resulting in slow
circulation and mixing seen outside the formal convection zone. The approach
may be extended to deal with rotation and composition gradients. Tests of this
description in the stellar evolution code TYCHO produce carbon stars on the
asymptotic giant branch (AGB), an isochrone age for the Hyades and three young
clusters with lithium depletion ages from brown dwarfs, and lithium and
beryllium depletion consistent with observations of the Hyades and Pleiades,
all without tuning parameters. The insight into the different contributions of
rotational and hydrodynamic mixing processes could have important implications
for realistic simulation of supernovae and other questions in stellar
evolution.Comment: 27 pages, 5 figures, accepted to the Astrophysical Journa
A spectroscopy study of nearby late-type stars, possible members of stellar kinematic groups
Nearby late-type stars are excellent targets for seeking young objects in
stellar associations and moving groups. The origin of these structures is still
misunderstood, and lists of moving group members often change with time and
also from author to author. Most members of these groups have been identified
by means of kinematic criteria, leading to an important contamination of
previous lists by old field stars. We attempt to identify unambiguous moving
group members among a sample of nearby-late type stars by studying their
kinematics, lithium abundance, chromospheric activity, and other age-related
properties. High-resolution echelle spectra () of a sample of
nearby late-type stars are used to derive accurate radial velocities that are
combined with the precise Hipparcos parallaxes and proper motions to compute
galactic-spatial velocity components. Stars are classified as possible members
of the classical moving groups according to their kinematics. The spectra are
also used to study several age-related properties for young late-type stars,
i.e., the equivalent width of the lithium Li~{\sc i} \space 6707.8 \space \AA
\space line or the index. Additional information like X-ray
fluxes from the ROSAT All-Sky Survey or the presence of debris discs is also
taken into account. The different age estimators are compared and the moving
group membership of the kinematically selected candidates are discussed. From a
total list of 405 nearby stars, 102 have been classified as moving group
candidates according to their kinematics. i.e., only 25.2 \% of the
sample. The number reduces when age estimates are considered, and only 26
moving group candidates (25.5\% of the 102 candidates) have ages in agreement
with the star having the same age as an MG memberComment: 39 pages, 11 figures. Accepted for publication in Astronomy \&
Astrophysic
Li abundance/surface activity connections in solar-type Pleiades
The relation between the lithium abundance, <i>A<sub>Li</sub></i>, and photospheric activity of solar-type Pleiads is investigated for the first time via acquisition and analysis of B and V-band data. Predictions of activity levels of target stars were made according to the <i>A<sub>Li</sub></i>/ (B-V) relation and then compared with new CCD photometric measurements. Six sources behaved according to the predictions while one star (HII 676), with low predicted activity, exhibited the largest variability of the study; another star (HII 3197), with high predicted activity, was surprisingly quiet. Two stars displayed non-periodic fadings, this being symptomatic of orbiting disk-like structures with irregular density distributions. Although the observation windows were not ideal for rotational period detection, some periodograms provided possible values; the light-curve obtained for HII 1532 is consistent with that previously recorded
- …
