543 research outputs found

    A Three-Dimensional Pattern-Space Representation for Volumetric Arrays

    Get PDF
    A three-dimensional pattern-space representation is presented for volumetric arrays. In this representation, the radiation pattern of an array is formed by the evaluation of the three-dimensional pattern-space on a spherical surface. The scan angle of the array determines the position of this surface within the pattern-space. This pattern-space representation is used in conjunction with a genetic algorithm to minimize the sidelobe levels exhibited by a thinned volumetric array during scanning

    Grating Lobe Reduction in Aperiodic Linear Arrays of Physically Large Antennas

    Get PDF
    We present performance bounds obtained from the optimization of the sidelobe levels of aperiodic linear arrays. The antennas comprising these arrays are large compared to the distance between neighboring antennas, a case not addressed in previously published work. This optimization is performed in pattern-space and is applicable over a wide range of scan angles. We show that grating lobes can be suppressed even when the elemental antennas are several wavelengths in size, provided that the ratio of the antenna size to the average spacing between the antenna center-points does not exceed 80%

    LEO Download Capacity Analysis for a Network of Adaptive Array Ground Stations

    Get PDF
    To lower costs and reduce latency, a network of adaptive array ground stations, distributed across the United States, is considered for the downlink of a polar-orbiting low earth orbiting (LEO) satellite. Assuming the X-band 105 Mbps transmitter of NASA s Earth Observing 1 (EO-1) satellite with a simple line-of-sight propagation model, the average daily download capacity in bits for a network of adaptive array ground stations is compared to that of a single 11 m dish in Poker Flats, Alaska. Each adaptive array ground station is assumed to have multiple steerable antennas, either mechanically steered dishes or phased arrays that are mechanically steered in azimuth and electronically steered in elevation. Phased array technologies that are being developed for this application are the space-fed lens (SFL) and the reflectarray. Optimization of the different boresight directions of the phased arrays within a ground station is shown to significantly increase capacity; for example, this optimization quadruples the capacity for a ground station with eight SFLs. Several networks comprising only two to three ground stations are shown to meet or exceed the capacity of the big dish, Cutting the data rate by half, which saves modem costs and increases the coverage area of each ground station, is shown to increase the average daily capacity of the network for some configurations

    Properties of rf-sputtered indium-tin-oxynitride thin films

    Get PDF
    Indium-tin-oxide (ITO) and indium-tin-oxynitride (ITON) thin films have been fabricated by rf-sputtering in plasma containing Ar or a mixture of Ar and N-2, respectively. The structural, electrical and optical properties of ITON films were examined and compared with those of ITO films. The microstructure of ITON films was found to be dependent on the nitrogen concentration in the plasma. Increasing the amount of nitrogen in the plasma increased the resistivity and reduced the carrier concentration and mobility of the films. The electrical properties of the ITON films improved after annealing. The absorption edge of the ITON films deposited in pure N-2 plasma was shifted towards higher energies and showed reduced infrared reflectance compared to the respective properties of ITO films. The potential of indium-tin-oxynitride films for use as a transparent conductive material for optoelectronic devices is addressed

    Scan Loss Pattern Synthesis for Adaptive Array Ground Stations

    Get PDF
    We present several techniques for maximizing the contact time between low Earth orbiting satellites (LEOs) and a ground station (GS). The GS comprises an adaptive array of electronically steered space-fed lenses (SFLs). Each SFL is manufactured as a low-cost printed circuit with the result that it exhibits scanning loss. By differently orienting the boresights of the SFLs in the adaptive array, the SFL\u27s scanning losses can be made to optimally complement the path loss of the LEO, thereby reducing the cost of the GS while maximizing the download capacity of the satellite link. The optimization, implemented with a genetic algorithm (GA), can be viewed as a kind of pattern synthesis. Such arrays will benefit Earth exploration satellite service (EESS) and telemetry applications, promising a decreased cost and increased reliability as compared with GSs consisting of a large dish antenna. We show that a network of these GSs comprising a total of fourteen small antennas can achieve an average daily data rate that is comparable with that of a single large dish antenna for the Earth Observing One (EO-1) satellite, without increasing the output power of the satellite. We also analyze the case in which the satellite transmits with a variable bit rate (VBR). Furthermore, we show that by selectively populating the focal surface of the SFL with feeds, simultaneous communications with multiple satellites can be achieved with a single ground station

    Les bulles « robustes »:Pourquoi il faut construire des logements en région parisienne

    Get PDF
    « Bulle » ou « pas bulle » ? La question taraude les observateurs et les acteurs du marché immobilier français. Nous examinons dans cet article les éléments empiriques et théoriques qui expliquent la hausse des prix récente et sa résistance aux retournements conjoncturels. En combinant la notion de bulle économique, les arguments de l’économie spatiale et une analyse d’économie politique, nous suggérons que la valorisation importante de l’immobilier en France est le résultat d’une logique rationnelle et conforte les intérêts des acteurs locaux. Dès lors, la forte valorisation peut être considérée comme une « bulle robuste », à même de résister à des chocs importants. Cette bulle organise un transfert intergénérationnel et peut avoir des effets positifs. Elle peut également renforcer la ségrégation spatiale, alimenter les inégalités territoriales et empêcher d’exploiter les économies d’agglomération possibles. L’analyse est détaillée sur la région Ile-de-France où ces phénomènes sont particulièrement marqués

    Application of Millimeter Wave, Eddy Current and Thermographic Methods for Detection of Corrosion in Aluminum Substrate

    Get PDF
    Aluminum structures exposed to the elements are susceptible to corrosion. Corrosion may cause various mechanical and structural deficiencies such as material thinning. It is desirable to rapidly detect and evaluate the properties of an aluminum substrate early in the corrosion process to avoid costly maintenance actions later. There are several nondestructive testing methods for this purpose. To investigate capabilities of millimeter wave, conventional eddy current, and flash thermography techniques for detection of large corrosion areas in aluminum substrates, two corroded samples were inspected with and without dielectric coating (appliqué). This paper presents the results of the c-scan imaging of these samples using the methods mentioned above. The attributes of these methods for detection and evaluation of large, severe and non-uniform corrosion areas with and without a dielectric coating are discussed

    Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese: The Singapore Chinese health study

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified genetic factors in type 2 diabetes (T2D), mostly among individuals of European ancestry. We tested whether previously identified T2D-associated single nucleotide polymorphisms (SNPs) replicate and whether SNPs in regions near known T2D SNPs were associated with T2D within the Singapore Chinese Health Study. Methods: 2338 cases and 2339 T2D controls from the Singapore Chinese Health Study were genotyped for 507,509 SNPs. Imputation extended the genotyped SNPs to 7,514,461 with high estimated certainty (r2>0.8). Replication of known index SNP associations in T2D was attempted. Risk scores were computed as the sum of index risk alleles. SNPs in regions ±100 kb around each index were tested for associations with T2D in conditional fine-mapping analysis. Results: Of 69 index SNPs, 20 were genotyped directly and genotypes at 35 others were well imputed. Among the 55 SNPs with data, disease associations were replicated (at p<0.05) for 15 SNPs, while 32 more were directionally consistent with previous reports. Risk score was a significant predictor with a 2.03 fold higher risk CI (1.69-2.44) of T2D comparing the highest to lowest quintile of risk allele burden (p = 5.72×10-14). Two improved SNPs around index rs10923931 and 5 new candidate SNPs around indices rs10965250 and rs1111875 passed simple Bonferroni corrections for significance in conditional analysis. Nonetheless, only a small fraction (2.3% on the disease liability scale) of T2D burden in Singapore is explained by these SNPs. Conclusions: While diabetes risk in Singapore Chinese involves genetic variants, most disease risk remains unexplained. Further genetic work is ongoing in the Singapore Chinese population to identify unique common variants not already seen in earlier studies. However rapid increases in T2D risk have occurred in recent decades in this population, indicating that dynamic environmental influences and possibly gene by environment interactions complicate the genetic architecture of this disease. © 2014 Chen et al

    Comparison of X-Ray, Millimeter Wave, Shearography and Through-Transmission Ultrasonic Methods for Inspection of Honeycomb Composites

    Get PDF
    Honeycomb composites are increasingly finding utility in a variety of environments and applications, such as aircraft structural components, flight control components, radomes, etc. In-service and environmental stresses can produce unwanted flaws that adversely affect the structural integrity and functionality of these composites. These flaws may be in the forms of disbonds, delaminations, impact damage, crushed honeycomb, moisture intrusion, internal cracks, etc. There are several nondestructive testing (NDT) methods that may be used to inspect these composites for the presence and evaluation of these flaws. Such NDT methods include X-ray computed tomography, near-field millimeter wave, shearography, and ultrasonic testing. To assess the capabilities of these methods for honeycomb composite inspection, two honeycomb composites panels were produced with several embedded flaws and missing material primarily representing planar disbonds at various levels within the thickness of the panels and with different shapes. Subsequently, the aforementioned NDT methods were used to produce images of the two panels. This paper presents the results of these investigations and a comparison among the capabilities of these methods

    Useful pharmacodynamic endpoints in children: selection, measurement, and next steps.

    Get PDF
    Pharmacodynamic (PD) endpoints are essential for establishing the benefit-to-risk ratio for therapeutic interventions in children and neonates. This article discusses the selection of an appropriate measure of response, the PD endpoint, which is a critical methodological step in designing pediatric efficacy and safety studies. We provide an overview of existing guidance on the choice of PD endpoints in pediatric clinical research. We identified several considerations relevant to the selection and measurement of PD endpoints in pediatric clinical trials, including the use of biomarkers, modeling, compliance, scoring systems, and validated measurement tools. To be useful, PD endpoints in children need to be clinically relevant, responsive to both treatment and/or disease progression, reproducible, and reliable. In most pediatric disease areas, this requires significant validation efforts. We propose a minimal set of criteria for useful PD endpoint selection and measurement. We conclude that, given the current heterogeneity of pediatric PD endpoint definitions and measurements, both across and within defined disease areas, there is an acute need for internationally agreed, validated, and condition-specific pediatric PD endpoints that consider the needs of all stakeholders, including healthcare providers, policy makers, patients, and families.Pediatric Research advance online publication, 11 April 2018; doi:10.1038/pr.2018.38
    corecore