4,542 research outputs found
Any-order propagation of the nonlinear Schroedinger equation
We derive an exact propagation scheme for nonlinear Schroedinger equations.
This scheme is entirely analogous to the propagation of linear Schroedinger
equations. We accomplish this by defining a special operator whose algebraic
properties ensure the correct propagation. As applications, we provide a simple
proof of a recent conjecture regarding higher-order integrators for the
Gross-Pitaevskii equation, extend it to multi-component equations, and to a new
class of integrators.Comment: 10 pages, no figures, submitted to Phys. Rev.
Measured beam patterns of biomimetic receivers improve localisation performance of an ultrasonic sonar
The Beam Based Method (BBM) is a novel sonar system inspired by bat echolocation for a sonar system with one emitter and two receivers. Knowledge of the beam pattern of the receivers makes it possible to estimate the orientation of a reflecting target. In this paper, the beam pattern of four biomimetic receivers is included in the sonar system model to test which one makes the BBM localization method most accurate. Simulations are designed in MatLab and, along with the sonar system, they also model ultrasonic emission, reflection by a target and filtering through the receivers' beam pattern. All receivers are associated with similar error values in estimating target orientation. This sonar system will be built and mounted on robots for non-destructive evaluations
Mirror formation control in the vicinity of an asteroid
Two strategies are presented for the positioning and control of a spacecraft formation designed to focus sunlight onto a point on the surface of asteroid, thereby sublimating the material and ejecting debris creating thrust. In the first approach, the formation is located at artficial equilibrium points around the asteroid and controlled using the force from the solar radiation pressure. The second approach determines the optimal periodic formation orbits, subject to the gravitational perturbations from the asteroid, the solar radiation pressure and the control acceleration derived from a control law
Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization
A versatile method is described for the practical computation of the discrete
Fourier transforms (DFT) of a continuous function given by its values
at the points of a uniform grid generated by conjugacy classes
of elements of finite adjoint order in the fundamental region of
compact semisimple Lie groups. The present implementation of the method is for
the groups SU(2), when is reduced to a one-dimensional segment, and for
in multidimensional cases. This simplest case
turns out to result in a transform known as discrete cosine transform (DCT),
which is often considered to be simply a specific type of the standard DFT.
Here we show that the DCT is very different from the standard DFT when the
properties of the continuous extensions of these two discrete transforms from
the discrete grid points to all points are
considered. (A) Unlike the continuous extension of the DFT, the continuous
extension of (the inverse) DCT, called CEDCT, closely approximates
between the grid points . (B) For increasing , the derivative of CEDCT
converges to the derivative of . And (C), for CEDCT the principle of
locality is valid. Finally, we use the continuous extension of 2-dimensional
DCT to illustrate its potential for interpolation, as well as for the data
compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's
Repor
Bounds on Quantum Correlations in Bell Inequality Experiments
Bell inequality violation is one of the most widely known manifestations of
entanglement in quantum mechanics; indicating that experiments on physically
separated quantum mechanical systems cannot be given a local realistic
description. However, despite the importance of Bell inequalities, it is not
known in general how to determine whether a given entangled state will violate
a Bell inequality. This is because one can choose to make many different
measurements on a quantum system to test any given Bell inequality and the
optimization over measurements is a high-dimensional variational problem. In
order to better understand this problem we present algorithms that provide, for
a given quantum state, both a lower bound and an upper bound on the maximal
expectation value of a Bell operator. Both bounds apply techniques from convex
optimization and the methodology for creating upper bounds allows them to be
systematically improved. In many cases these bounds determine measurements that
would demonstrate violation of the Bell inequality or provide a bound that
rules out the possibility of a violation. Examples are given to illustrate how
these algorithms can be used to conclude definitively if some quantum states
violate a given Bell inequality.Comment: 13 pages, 1 table, 2 figures. Updated version as published in PR
Mining and Analyzing the Italian Parliament: Party Structure and Evolution
The roll calls of the Italian Parliament in the XVI legislature are studied
by employing multidimensional scaling, hierarchical clustering, and network
analysis. In order to detect changes in voting behavior, the roll calls have
been divided in seven periods of six months each. All the methods employed
pointed out an increasing fragmentation of the political parties endorsing the
previous government that culminated in its downfall. By using the concept of
modularity at different resolution levels, we identify the community structure
of Parliament and its evolution in each of the considered time periods. The
analysis performed revealed as a valuable tool in detecting trends and drifts
of Parliamentarians. It showed its effectiveness at identifying political
parties and at providing insights on the temporal evolution of groups and their
cohesiveness, without having at disposal any knowledge about political
membership of Representatives.Comment: 27 pages, 14 figure
Determination of Inter-Phase Line Tension in Langmuir Films
A Langmuir film is a molecularly thin film on the surface of a fluid; we
study the evolution of a Langmuir film with two co-existing fluid phases driven
by an inter-phase line tension and damped by the viscous drag of the underlying
subfluid. Experimentally, we study an 8CB Langmuir film via digitally-imaged
Brewster Angle Microscopy (BAM) in a four-roll mill setup which applies a
transient strain and images the response. When a compact domain is stretched by
the imposed strain, it first assumes a bola shape with two tear-drop shaped
reservoirs connected by a thin tether which then slowly relaxes to a circular
domain which minimizes the interfacial energy of the system. We process the
digital images of the experiment to extract the domain shapes. We then use one
of these shapes as an initial condition for the numerical solution of a
boundary-integral model of the underlying hydrodynamics and compare the
subsequent images of the experiment to the numerical simulation. The numerical
evolutions first verify that our hydrodynamical model can reproduce the
observed dynamics. They also allow us to deduce the magnitude of the line
tension in the system, often to within 1%. We find line tensions in the range
of 200-600 pN; we hypothesize that this variation is due to differences in the
layer depths of the 8CB fluid phases.Comment: See (http://www.math.hmc.edu/~ajb/bola/) for related movie
Bivariate spline interpolation with optimal approximation order
Let be a triangulation of some polygonal domain f c R2 and let S9 (A) denote the space of all bivariate polynomial splines of smoothness r and degree q with respect to A. We develop the first Hermite-type interpolation scheme for S9 (A), q >_ 3r + 2, whose approximation error is bounded above by Kh4+i, where h is the maximal diameter of the triangles in A, and the constant K only depends on the smallest angle of the triangulation and is independent of near-degenerate edges and nearsingular vertices. Moreover, the fundamental functions of our scheme are minimally supported and form a locally linearly independent basis for a superspline subspace of Sr, (A). This shows that the optimal approximation order can be achieved by using minimally supported splines. Our method of proof is completely different from the quasi-interpolation techniques for the study of the approximation power of bivariate splines developed in [71 and [181
Products, coproducts and singular value decomposition
Products and coproducts may be recognized as morphisms in a monoidal tensor
category of vector spaces. To gain invariant data of these morphisms, we can
use singular value decomposition which attaches singular values, ie generalized
eigenvalues, to these maps. We show, for the case of Grassmann and Clifford
products, that twist maps significantly alter these data reducing degeneracies.
Since non group like coproducts give rise to non classical behavior of the
algebra of functions, ie make them noncommutative, we hope to be able to learn
more about such geometries. Remarkably the coproduct for positive singular
values of eigenvectors in yields directly corresponding eigenvectors in
A\otimes A.Comment: 17 pages, three eps-figure
- …
