4,542 research outputs found

    Any-order propagation of the nonlinear Schroedinger equation

    Full text link
    We derive an exact propagation scheme for nonlinear Schroedinger equations. This scheme is entirely analogous to the propagation of linear Schroedinger equations. We accomplish this by defining a special operator whose algebraic properties ensure the correct propagation. As applications, we provide a simple proof of a recent conjecture regarding higher-order integrators for the Gross-Pitaevskii equation, extend it to multi-component equations, and to a new class of integrators.Comment: 10 pages, no figures, submitted to Phys. Rev.

    Measured beam patterns of biomimetic receivers improve localisation performance of an ultrasonic sonar

    Get PDF
    The Beam Based Method (BBM) is a novel sonar system inspired by bat echolocation for a sonar system with one emitter and two receivers. Knowledge of the beam pattern of the receivers makes it possible to estimate the orientation of a reflecting target. In this paper, the beam pattern of four biomimetic receivers is included in the sonar system model to test which one makes the BBM localization method most accurate. Simulations are designed in MatLab and, along with the sonar system, they also model ultrasonic emission, reflection by a target and filtering through the receivers' beam pattern. All receivers are associated with similar error values in estimating target orientation. This sonar system will be built and mounted on robots for non-destructive evaluations

    Mirror formation control in the vicinity of an asteroid

    Get PDF
    Two strategies are presented for the positioning and control of a spacecraft formation designed to focus sunlight onto a point on the surface of asteroid, thereby sublimating the material and ejecting debris creating thrust. In the first approach, the formation is located at artficial equilibrium points around the asteroid and controlled using the force from the solar radiation pressure. The second approach determines the optimal periodic formation orbits, subject to the gravitational perturbations from the asteroid, the solar radiation pressure and the control acceleration derived from a control law

    Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization

    Full text link
    A versatile method is described for the practical computation of the discrete Fourier transforms (DFT) of a continuous function g(t)g(t) given by its values gjg_{j} at the points of a uniform grid FNF_{N} generated by conjugacy classes of elements of finite adjoint order NN in the fundamental region FF of compact semisimple Lie groups. The present implementation of the method is for the groups SU(2), when FF is reduced to a one-dimensional segment, and for SU(2)×...×SU(2)SU(2)\times ... \times SU(2) in multidimensional cases. This simplest case turns out to result in a transform known as discrete cosine transform (DCT), which is often considered to be simply a specific type of the standard DFT. Here we show that the DCT is very different from the standard DFT when the properties of the continuous extensions of these two discrete transforms from the discrete grid points tj;j=0,1,...Nt_j; j=0,1, ... N to all points tFt \in F are considered. (A) Unlike the continuous extension of the DFT, the continuous extension of (the inverse) DCT, called CEDCT, closely approximates g(t)g(t) between the grid points tjt_j. (B) For increasing NN, the derivative of CEDCT converges to the derivative of g(t)g(t). And (C), for CEDCT the principle of locality is valid. Finally, we use the continuous extension of 2-dimensional DCT to illustrate its potential for interpolation, as well as for the data compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's Repor

    Bounds on Quantum Correlations in Bell Inequality Experiments

    Get PDF
    Bell inequality violation is one of the most widely known manifestations of entanglement in quantum mechanics; indicating that experiments on physically separated quantum mechanical systems cannot be given a local realistic description. However, despite the importance of Bell inequalities, it is not known in general how to determine whether a given entangled state will violate a Bell inequality. This is because one can choose to make many different measurements on a quantum system to test any given Bell inequality and the optimization over measurements is a high-dimensional variational problem. In order to better understand this problem we present algorithms that provide, for a given quantum state, both a lower bound and an upper bound on the maximal expectation value of a Bell operator. Both bounds apply techniques from convex optimization and the methodology for creating upper bounds allows them to be systematically improved. In many cases these bounds determine measurements that would demonstrate violation of the Bell inequality or provide a bound that rules out the possibility of a violation. Examples are given to illustrate how these algorithms can be used to conclude definitively if some quantum states violate a given Bell inequality.Comment: 13 pages, 1 table, 2 figures. Updated version as published in PR

    Mining and Analyzing the Italian Parliament: Party Structure and Evolution

    Full text link
    The roll calls of the Italian Parliament in the XVI legislature are studied by employing multidimensional scaling, hierarchical clustering, and network analysis. In order to detect changes in voting behavior, the roll calls have been divided in seven periods of six months each. All the methods employed pointed out an increasing fragmentation of the political parties endorsing the previous government that culminated in its downfall. By using the concept of modularity at different resolution levels, we identify the community structure of Parliament and its evolution in each of the considered time periods. The analysis performed revealed as a valuable tool in detecting trends and drifts of Parliamentarians. It showed its effectiveness at identifying political parties and at providing insights on the temporal evolution of groups and their cohesiveness, without having at disposal any knowledge about political membership of Representatives.Comment: 27 pages, 14 figure

    Determination of Inter-Phase Line Tension in Langmuir Films

    Get PDF
    A Langmuir film is a molecularly thin film on the surface of a fluid; we study the evolution of a Langmuir film with two co-existing fluid phases driven by an inter-phase line tension and damped by the viscous drag of the underlying subfluid. Experimentally, we study an 8CB Langmuir film via digitally-imaged Brewster Angle Microscopy (BAM) in a four-roll mill setup which applies a transient strain and images the response. When a compact domain is stretched by the imposed strain, it first assumes a bola shape with two tear-drop shaped reservoirs connected by a thin tether which then slowly relaxes to a circular domain which minimizes the interfacial energy of the system. We process the digital images of the experiment to extract the domain shapes. We then use one of these shapes as an initial condition for the numerical solution of a boundary-integral model of the underlying hydrodynamics and compare the subsequent images of the experiment to the numerical simulation. The numerical evolutions first verify that our hydrodynamical model can reproduce the observed dynamics. They also allow us to deduce the magnitude of the line tension in the system, often to within 1%. We find line tensions in the range of 200-600 pN; we hypothesize that this variation is due to differences in the layer depths of the 8CB fluid phases.Comment: See (http://www.math.hmc.edu/~ajb/bola/) for related movie

    Bivariate spline interpolation with optimal approximation order

    Get PDF
    Let be a triangulation of some polygonal domain f c R2 and let S9 (A) denote the space of all bivariate polynomial splines of smoothness r and degree q with respect to A. We develop the first Hermite-type interpolation scheme for S9 (A), q >_ 3r + 2, whose approximation error is bounded above by Kh4+i, where h is the maximal diameter of the triangles in A, and the constant K only depends on the smallest angle of the triangulation and is independent of near-degenerate edges and nearsingular vertices. Moreover, the fundamental functions of our scheme are minimally supported and form a locally linearly independent basis for a superspline subspace of Sr, (A). This shows that the optimal approximation order can be achieved by using minimally supported splines. Our method of proof is completely different from the quasi-interpolation techniques for the study of the approximation power of bivariate splines developed in [71 and [181

    Products, coproducts and singular value decomposition

    Full text link
    Products and coproducts may be recognized as morphisms in a monoidal tensor category of vector spaces. To gain invariant data of these morphisms, we can use singular value decomposition which attaches singular values, ie generalized eigenvalues, to these maps. We show, for the case of Grassmann and Clifford products, that twist maps significantly alter these data reducing degeneracies. Since non group like coproducts give rise to non classical behavior of the algebra of functions, ie make them noncommutative, we hope to be able to learn more about such geometries. Remarkably the coproduct for positive singular values of eigenvectors in AA yields directly corresponding eigenvectors in A\otimes A.Comment: 17 pages, three eps-figure
    corecore