999 research outputs found

    Minimum Enclosing Circle with Few Extra Variables

    Get PDF
    Asano et al. [JoCG 2011] proposed an open problem of computing the minimum enclosing circle of a set of n points in R^2 given in a read-only array in sub-quadratic time. We show that Megiddo\u27s prune and search algorithm for computing the minimum radius circle enclosing the given points can be tailored to work in a read-only environment in O(n^{1+epsilon}) time using O(log n) extra space, where epsilon is a positive constant less than 1. As a warm-up, we first solve the same problem in an in-place setup in linear time with O(1) extra space

    On Density, Threshold and Emptiness Queries for Intervals in the Streaming Model

    Get PDF
    In this paper, we study the maximum density, threshold and emptiness queries for intervals in the streaming model. The input is a stream S of n points in the real line R and a floating closed interval W of width alpha. The specific problems we consider in this paper are as follows. - Maximum density: find a placement of W in R containing the maximum number of points of S. - Threshold query: find a placement of W in R, if it exists, that contains at least Delta elements of S. - Emptiness query: find, if possible, a placement of W within the extent of S so that the interior of W does not contain any element of S. The stream S, being huge, does not fit into main memory and can be read sequentially at most a constant number of times, usually once. The problems studied here in the geometric setting have relations to frequency estimation and heavy hitter identification in a stream of data. We provide lower bounds and results on trade-off between extra space and quality of solution. We also discuss generalizations for the higher dimensional variants for a few cases
    corecore