80 research outputs found
Global regulation of alternative splicing during myogenic differentiation
Recent genome-wide analyses have elucidated the extent of alternative splicing (AS) in mammals, often focusing on comparisons of splice isoforms between differentiated tissues. However, regulated splicing changes are likely to be important in biological transitions such as cellular differentiation, or response to environmental stimuli. To assess the extent and significance of AS in myogenesis, we used splicing-sensitive microarray analysis of differentiating C2C12 myoblasts. We identified 95 AS events that undergo robust splicing transitions during C2C12 differentiation. More than half of the splicing transitions are conserved during differentiation of avian myoblasts, suggesting the products and timing of transitions are functionally significant. The majority of splicing transitions during C2C12 differentiation fall into four temporal patterns and were dependent on the myogenic program, suggesting that they are integral components of myogenic differentiation. Computational analyses revealed enrichment of many sequence motifs within the upstream and downstream intronic regions near the alternatively spliced regions corresponding to binding sites of splicing regulators. Western analyses demonstrated that several splicing regulators undergo dynamic changes in nuclear abundance during differentiation. These findings show that within a developmental context, AS is a highly regulated and conserved process, suggesting a major role for AS regulation in myogenic differentiation.National Institutes of Health (U.S.) (grant number R01GM076493)Ford Foundation (Predoctoral Diversity Fellowship)Baylor College of Medicine. Graduate School of Biomedical Sciences (Baylor Research Advocates for Student Scientists
Succession and determinants of the early life nasopharyngeal microbiota in a South African birth cohort
Background: Bacteria colonizing the nasopharynx play a key role as gatekeepers of respiratory health. Yet, dynamics of early life nasopharyngeal (NP) bacterial profiles remain understudied in low- and middle-income countries (LMICs), where children have a high prevalence of risk factors for lower respiratory tract infection. We investigated longitudinal changes in NP bacterial profiles, and associated exposures, among healthy infants from low-income households in South Africa. Methods: We used short fragment (V4 region) 16S rRNA gene amplicon sequencing to characterize NP bacterial profiles from 103 infants in a South African birth cohort, at monthly intervals from birth through the first 12 months of life and six monthly thereafter until 30 months. Results: Corynebacterium and Staphylococcus were dominant colonizers at 1 month of life; however, these were rapidly replaced by Moraxella- or Haemophilus-dominated profiles by 4 months. This succession was almost universal and largely independent of a broad range of exposures. Warm weather (summer), lower gestational age, maternal smoking, no day-care attendance, antibiotic exposure, or low height-for-age z score at 12 months were associated with higher alpha and beta diversity. Summer was also associated with higher relative abundances of Staphylococcus, Streptococcus, Neisseria, or anaerobic gram-negative bacteria, whilst spring and winter were associated with higher relative abundances of Haemophilus or Corynebacterium, respectively. Maternal smoking was associated with higher relative abundances of Porphyromonas. Antibiotic therapy (or isoniazid prophylaxis for tuberculosis) was associated with higher relative abundance of anerobic taxa (Porphyromonas, Fusobacterium, and Prevotella) and with lower relative abundances of health associated-taxa Corynebacterium and Dolosigranulum. HIV-exposure was associated with higher relative abundances of Klebsiella or Veillonella and lower relative abundances of an unclassified genus within the family Lachnospiraceae. Conclusions: In this intensively sampled cohort, there was rapid and predictable replacement of early profiles dominated by health-associated Corynebacterium and Dolosigranulum with those dominated by Moraxella and Haemophilus, independent of exposures. Season and antibiotic exposure were key determinants of NP bacterial profiles. Understudied but highly prevalent exposures prevalent in LMICs, including maternal smoking and HIV-exposure, were associated with NP bacterial profiles
Development and feasibility of the self-report quantified TSC-Associated Neuropsychiatric Disorders Checklist (TAND-SQ) (120 characters of 120 max)
The UCSC Genome Browser Database: update 2006
The University of California Santa Cruz Genome Browser Database (GBD) contains sequence and annotation data for the genomes of about a dozen vertebrate species and several major model organisms. Genome annotations typically include assembly data, sequence composition, genes and gene predictions, mRNA and expressed sequence tag evidence, comparative genomics, regulation, expression and variation data. The database is optimized to support fast interactive performance with web tools that provide powerful visualization and querying capabilities for mining the data. The Genome Browser displays a wide variety of annotations at all scales from single nucleotide level up to a full chromosome. The Table Browser provides direct access to the database tables and sequence data, enabling complex queries on genome-wide datasets. The Proteome Browser graphically displays protein properties. The Gene Sorter allows filtering and comparison of genes by several metrics including expression data and several gene properties. BLAT and In Silico PCR search for sequences in entire genomes in seconds. These tools are highly integrated and provide many hyperlinks to other databases and websites. The GBD, browsing tools, downloadable data files and links to documentation and other information can be found at
Alternative Splicing at a NAGNAG Acceptor Site as a Novel Phenotype Modifier
Approximately 30% of alleles causing genetic disorders generate premature termination codons (PTCs), which are usually associated with severe phenotypes. However, bypassing the deleterious stop codon can lead to a mild disease outcome. Splicing at NAGNAG tandem splice sites has been reported to result in insertion or deletion (indel) of three nucleotides. We identified such a mechanism as the origin of the mild to asymptomatic phenotype observed in cystic fibrosis patients homozygous for the E831X mutation (2623G>T) in the CFTR gene. Analyses performed on nasal epithelial cell mRNA detected three distinct isoforms, a considerably more complex situation than expected for a single nucleotide substitution. Structure-function studies and in silico analyses provided the first experimental evidence of an indel of a stop codon by alternative splicing at a NAGNAG acceptor site. In addition to contributing to proteome plasticity, alternative splicing at a NAGNAG tandem site can thus remove a disease-causing UAG stop codon. This molecular study reveals a naturally occurring mechanism where the effect of either modifier genes or epigenetic factors could be suspected. This finding is of importance for genetic counseling as well as for deciding appropriate therapeutic strategies
High-Throughput Proteomics Detection of Novel Splice Isoforms in Human Platelets
Alternative splicing (AS) is an intrinsic regulatory mechanism of all metazoans. Recent findings suggest that 100% of multiexonic human genes give rise to splice isoforms. AS can be specific to tissue type, environment or developmentally regulated. Splice variants have also been implicated in various diseases including cancer. Detection of these variants will enhance our understanding of the complexity of the human genome and provide disease-specific and prognostic biomarkers. We adopted a proteomics approach to identify exon skip events - the most common form of AS. We constructed a database harboring the peptide sequences derived from all hypothetical exon skip junctions in the human genome. Searching tandem mass spectrometry (MS/MS) data against the database allows the detection of exon skip events, directly at the protein level. Here we describe the application of this approach to human platelets, including the mRNA-based verification of novel splice isoforms of ITGA2, NPEPPS and FH. This methodology is applicable to all new or existing MS/MS datasets
A Novel Conserved Isoform of the Ubiquitin Ligase UFD2a/UBE4B Is Expressed Exclusively in Mature Striated Muscle Cells
Yeast Ufd2p was the first identified E4 multiubiquitin chain assembly factor. Its vertebrate homologues later referred to as UFD2a, UBE4B or E4B were also shown to have E3 ubiquitin ligase activity. UFD2a function in the brain has been well established in vivo, and in vitro studies have shown that its activity is essential for proper condensation and segregation of chromosomes during mitosis. Here we show that 2 alternative splice forms of UFD2a, UFD2a-7 and -7/7a, are expressed sequentially during myoblast differentiation of C2C12 cell cultures and during cardiotoxin-induced regeneration of skeletal muscle in mice. UFD2a-7 contains an alternate exon 7, and UFD2a-7/7a, the larger of the 2 isoforms, contains an additional novel exon 7a. Analysis of protein or mRNA expression in mice and zebrafish revealed that a similar pattern of isoform switching occurs during developmental myogenesis of cardiac and skeletal muscle. In vertebrates (humans, rodents, zebrafish), UFD2a-7/7a is expressed only in mature striated muscle. This unique tissue specificity is further validated by the conserved presence of 2 muscle-specific splicing regulatory motifs located in the 3′ introns of exons 7 and 7a. UFD2a interacts with VCP/p97, an AAA-type ATPase implicated in processes whose functions appear to be regulated, in part, through their interaction with one or more of 15 previously identified cofactors. UFD2a-7/7a did not interact with VCP/p97 in yeast 2-hybrid experiments, which may allow the ATPase to bind cofactors that facilitate its muscle-specific functions. We conclude that the regulated expression of these UFD2a isoforms most likely imparts divergent functions that are important for myogenisis
Width of Gene Expression Profile Drives Alternative Splicing
Alternative splicing generates an enormous amount of functional and proteomic diversity in metazoan organisms. This process is probably central to the macromolecular and cellular complexity of higher eukaryotes. While most studies have focused on the molecular mechanism triggering and controlling alternative splicing, as well as on its incidence in different species, its maintenance and evolution within populations has been little investigated. Here, we propose to address these questions by comparing the structural characteristics as well as the functional and transcriptional profiles of genes with monomorphic or polymorphic splicing, referred to as MS and PS genes, respectively. We find that MS and PS genes differ particularly in the number of tissues and cell types where they are expressed.We find a striking deficit of PS genes on the sex chromosomes, particularly on the Y chromosome where it is shown not to be due to the observed lower breadth of expression of genes on that chromosome. The development of a simple model of evolution of cis-regulated alternative splicing leads to predictions in agreement with these observations. It further predicts the conditions for the emergence and the maintenance of cis-regulated alternative splicing, which are both favored by the tissue specific expression of splicing variants. We finally propose that the width of the gene expression profile is an essential factor for the acquisition of new transcript isoforms that could later be maintained by a new form of balancing selection
- …
