815 research outputs found
Trapping of light beams and formation of spatial solitary waves in quadratic nonlinear media
Summary form only given. In this paper we report the outcome of our comprehensive investigations to study the dynamics of the beam trapping in both bulk crystals and optical planar waveguides made of quadratic nonlinear media in second-harmonic generation configurations. We address and discuss the suitable experimental conditions required to form spatial solitary waves in critical phase-matching and quasi-phase-matching settings.Peer ReviewedPostprint (published version
Ondas híbridas en guías ópticas ultradelgadas
The existence conditions and waveguiding properties of new hybri.d, TE and TM dominant waves guided by ultrathin organic films cladded by birefringent crystals are reportedPeer ReviewedPostprint (published version
Approximate solutions and scaling transformations for quadratic solitons
We study quadratic solitons supported by two- and three-wave parametric
interactions in chi-2 nonlinear media. Both planar and two-dimensional cases
are considered. We obtain very accurate, 'almost exact', explicit analytical
solutions, matching the actual bright soliton profiles, with the help of a
specially-developed approach, based on analysis of the scaling properties.
Additionally, we use these approximations to describe the linear tails of
solitary waves which are related to the properties of the soliton bound states.Comment: 11 pages, 9 figures; submitted for publicatio
Stable three-dimensional spinning optical solitons supported by competing quadratic and cubic nonlinearities
We show that the quadratic interaction of fundamental and second harmonics in
a bulk dispersive medium, combined with self-defocusing cubic nonlinearity,
give rise to completely localized spatiotemporal solitons (vortex tori) with
vorticity s=1. There is no threshold necessary for the existence of these
solitons. They are found to be stable against small perturbations if their
energy exceeds a certain critical value, so that the stability domain occupies
about 10% of the existence region of the solitons. We also demonstrate that the
s=1 solitons are stable against very strong perturbations initially added to
them. However, on the contrary to spatial vortex solitons in the same model,
the spatiotemporal solitons with s=2 are never stable.Comment: latex text, 10 ps and 2 jpg figures; Physical Review E, in pres
Enhanced soliton interactions by inhomogeneous nonlocality and nonlinearity
We address the interactions between optical solitons in the system with
longitudinally varying nonlocality degree and nonlinearity strength. We
consider a physical model describing light propagation in nematic liquid
crystals featuring a strongly nonlocal nonlinear response. We reveal that the
variation of the nonlocality and nonlinearity along the propagation direction
can substantially enhance or weaken the interaction between out-of-phase
solitons. This phenomenon manifests itself as a slowdown or acceleration of the
soliton collision dynamics in one-dimensional geometries or of the soliton
spiraling rate in bulk media. Therefore, one finds that by engineering the
nonlocality and nonlinearity variation rate one can control the output soliton
location.Comment: 22 pages, 5 figures, to appear in Physical Review
Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media
We demonstrate the existence of stable three-dimensional spatiotemporal
solitons (STSs) in media with a nonlocal cubic nonlinearity. Fundamental
(nonspinning) STSs forming one-parameter families are stable if their
propagation constant exceeds a certain critical value, that is inversely
proportional to the range of nonlocality of nonlinear response. All spinning
three-dimensional STSs are found to be unstable.Comment: 14 pages, 6 figures, accepted to PRE, Rapid Communication
Two-color nonlinear localized photonic modes
We analyze second-harmonic generation (SHG) at a thin effectively quadratic
nonlinear interface between two linear optical media. We predict multistability
of SHG for both plane and localized waves, and also describe two-color
localized photonic modes composed of a fundamental wave and its second harmonic
coupled together by parametric interaction at the interface.Comment: 4 pages, 5 figures (updated references
Stable spatiotemporal solitons in Bessel optical lattices
We investigate the existence and stability of three-dimensional (3D) solitons
supported by cylindrical Bessel lattices (BLs) in self-focusing media. If the
lattice strength exceeds a threshold value, we show numerically, and using the
variational approximation, that the solitons are stable within one or two
intervals of values of their norm. In the latter case, the Hamiltonian-vs.-norm
diagram has a "swallowtail" shape, with three cuspidal points. The model
applies to Bose-Einstein condensates (BECs) and to optical media with saturable
nonlinearity, suggesting new ways of making stable 3D BEC solitons and "light
bullets" of an arbitrary size.Comment: 9 pages, 4 figures, Phys. Rev. Lett., in pres
Spatiotemporal discrete multicolor solitons
We have found various families of two-dimensional spatiotemporal solitons in
quadratically nonlinear waveguide arrays. The families of unstaggered odd, even
and twisted stationary solutions are thoroughly characterized and their
stability against perturbations is investigated. We show that the twisted and
even solutions display instability, while most of the odd solitons show
remarkable stability upon evolution.Comment: 18 pages,7 figures. To appear in Physical Review
- …
