141 research outputs found
A Dark Matter Candidate from an Extra (Non-Universal) Dimension
We show that a recently constructed five-dimensional (5D) model with
gauge-Higgs unification and explicit Lorentz symmetry breaking in the bulk,
provides a natural dark matter candidate. This is the lightest Kaluza-Klein
particle odd under a certain discrete Z_2 symmetry, which has been introduced
to improve the naturalness of the model, and resembles KK-parity but is less
constraining.
The dark matter candidate is the first KK mode of a 5D gauge field and
electroweak bounds force its mass above the TeV scale. Its pair annihilation
rate is too small to guarantee the correct relic abundance; however
coannihilations with colored particles greatly enhance the effective
annihilation rate, leading to realistic relic densities.Comment: 26 pages, 10 figures; v2: fig.1 corrected, one reference and some
comments added, conclusions unchanged. Version to appear in JHE
Low energy antideuterons: shedding light on dark matter
Low energy antideuterons suffer a very low secondary and tertiary
astrophysical background, while they can be abundantly synthesized in dark
matter pair annihilations, therefore providing a privileged indirect dark
matter detection technique. The recent publication of the first upper limit on
the low energy antideuteron flux by the BESS collaboration, a new evaluation of
the standard astrophysical background, and remarkable progresses in the
development of a dedicated experiment, GAPS, motivate a new and accurate
analysis of the antideuteron flux expected in particle dark matter models. To
this extent, we consider here supersymmetric, universal extra-dimensions (UED)
Kaluza-Klein and warped extra-dimensional dark matter models, and assess both
the prospects for antideuteron detection as well as the various related sources
of uncertainties. The GAPS experiment, even in a preliminary balloon-borne
setup, will explore many supersymmetric configurations, and, eventually, in its
final space-borne configuration, will be sensitive to primary antideuterons
over the whole cosmologically allowed UED parameter space, providing a search
technique which is highly complementary with other direct and indirect dark
matter detection experiments.Comment: 26 pages, 7 figures; version to appear in JCA
The Role of Antimatter Searches in the Hunt for Supersymmetric Dark Matter
We analyze the antimatter yield of supersymmetric (SUSY) models with large
neutralino annihilation cross sections. We introduce three benchmark scenarios,
respectively featuring bino, wino and higgsino-like lightest neutralinos, and
we study in detail the resulting antimatter spectral features. We carry out a
systematic and transparent comparison between current and future prospects for
direct detection, neutrino telescopes and antimatter searches. We demonstrate
that often, in the models we consider, antimatter searches are the only
detection channel which already constrains the SUSY parameter space.
Particularly large antiprotons fluxes are expected for wino-like lightest
neutralinos, while significant antideuteron fluxes result from resonantly
annihilating binos. We introduce a simple and general recipe which allows to
assess the visibility of a given SUSY model at future antimatter search
facilities. We provide evidence that upcoming space-based experiments, like
PAMELA or AMS, are going to be, in many cases, the unique open road towards
dark matter discovery.Comment: 34 pages, 18 figures; V2: misprints in the labels of fig. 2,3 and 5
correcte
Experimental identification of non-pointlike dark-matter candidates
We show that direct dark matter detection experiments can distinguish between
pointlike and non-pointlike dark-matter candidates. The shape of the nuclear
recoil energy spectrum from pointlike dark-matter particles, e.g., neutralinos,
is determined by the velocity distribution of dark matter in the galactic halo
and by nuclear form factors. In contrast, typical cross sections of
non-pointlike dark matter, for example, Q-balls, have a new form factor, which
decreases rapidly with the recoil energy. Therefore, a signal from
non-pointlike dark matter is expected to peak near the experimental threshold
and to fall off rapidly at higher energies. Although the width of the signal is
practically independent of the dark matter velocity dispersion, its height is
expected to exhibit an annual modulation due to the changes in the dark matter
flux.Comment: 4 pages; minor changes, references adde
Model Independent Approach to Focus Point Supersymmetry: from Dark Matter to Collider Searches
The focus point region of supersymmetric models is compelling in that it
simultaneously features low fine-tuning, provides a decoupling solution to the
SUSY flavor and CP problems, suppresses proton decay rates and can accommodate
the WMAP measured cold dark matter (DM) relic density through a mixed
bino-higgsino dark matter particle. We present the focus point region in terms
of a weak scale parameterization, which allows for a relatively model
independent compilation of phenomenological constraints and prospects. We
present direct and indirect neutralino dark matter detection rates for two
different halo density profiles, and show that prospects for direct DM
detection and indirect detection via neutrino telescopes such as IceCube and
anti-deuteron searches by GAPS are especially promising. We also present LHC
reach prospects via gluino and squark cascade decay searches, and also via
clean trilepton signatures arising from chargino-neutralino production. Both
methods provide a reach out to m_{\tg}\sim 1.7 TeV. At a TeV-scale linear
e^+e^- collider (LC), the maximal reach is attained in the \tz_1\tz_2 or
\tz_1\tz_3 channels. In the DM allowed region of parameter space, a
\sqrt{s}=0.5 TeV LC has a reach which is comparable to that of the LHC.
However, the reach of a 1 TeV LC extends out to m_{\tg}\sim 3.5 TeV.Comment: 34 pages plus 36 eps figure
The Indirect Search for Dark Matter with IceCube
We revisit the prospects for IceCube and similar kilometer-scale telescopes
to detect neutrinos produced by the annihilation of weakly interacting massive
dark matter particles (WIMPs) in the Sun. We emphasize that the astrophysics of
the problem is understood; models can be observed or, alternatively, ruled out.
In searching for a WIMP with spin-independent interactions with ordinary
matter, IceCube is only competitive with direct detection experiments if the
WIMP mass is sufficiently large. For spin-dependent interactions IceCube
already has improved the best limits on spin-dependent WIMP cross sections by
two orders of magnitude. This is largely due to the fact that models with
significant spin-dependent couplings to protons are the least constrained and,
at the same time, the most promising because of the efficient capture of WIMPs
in the Sun. We identify models where dark matter particles are beyond the reach
of any planned direct detection experiments while being within reach of
neutrino telescopes. In summary, we find that, even when contemplating recent
direct detection results, neutrino telescopes have the opportunity to play an
important as well as complementary role in the search for particle dark matter.Comment: 17 pages, 10 figures, published in the New Journal of Physics 11
105019 http://www.iop.org/EJ/abstract/1367-2630/11/10/105019, new version
submitted to correct Abstract in origina
The Abundance of New Kind of Dark Matter Structures
A new kind of dark matter structures, ultracompact minihalos (UCMHs) was
proposed recently. They would be formed during the radiation dominated epoch if
the large density perturbations are existent. Moreover, if the dark matter is
made up of weakly interacting massive particles, the UCMHs can have effect on
cosmological evolution because of the high density and dark matter annihilation
within them. In this paper, one new parameter is introduced to consider the
contributions of UCMHs due to the dark matter annihilation to the evolution of
cosmology, and we use the current and future CMB observations to obtain the
constraint on the new parameter and then the abundance of UCMHs. The final
results are applicable for a wider range of dark matter parametersComment: 4 pages, 1 tabl
Generalized Analysis of Weakly-Interacting Massive Particle Searches
We perform a generalized analysis of data from WIMP search experiments for
point-like WIMPs of arbitrary spin and general Lorenz-invariant WIMP-nucleus
interaction. We show that in the non-relativistic limit only spin-independent
(SI) and spin-dependent (SD) WIMP-nucleon interactions survive, which can be
parameterized by only five independent parameters. We explore this
five-dimensional parameter space to determine whether the annual modulation
observed in the DAMA experiment can be consistent with all other experiments.
The pure SI interaction is ruled out except for very small region of parameter
space with the WIMP mass close to 50 GeV and the ratio of the WIMP-neutron to
WIMP-proton SI couplings . For the predominantly SD
interaction, we find an upper limit to the WIMP mass of about 18 GeV, which can
only be weakened if the constraint stemming from null searches for energetic
neutrinos from WIMP annihilation the Sun is evaded. None of the regions of the
parameter space that can reconcile all WIMP search results can be easily
accommodated in the minimal supersymmetric extension of the standard model.Comment: 27 pages, 3 figure
Direct versus indirect detection in mSUGRA with self-consistent halo models
We perform a detailed analysis of the detection prospects of neutralino dark
matter in the mSUGRA framework. We focus on models with a thermal relic
density, estimated with high accuracy using the DarkSUSY package, in the range
favored by current precision cosmological measurements. Direct and indirect
detection rates are computed implementing two models for the dark matter halo,
tracing opposite regimes for the phase of baryon infall, with fully consistent
density profiles and velocity distribution functions. This has allowed, for the
first time, a fully consistent comparison between direct and indirect detection
prospects. We discuss all relevant regimes in the mSUGRA parameter space,
underlining relevant effects, and providing the basis for extending the
discussion to alternative frameworks. In general, we find that direct detection
and searches for antideuterons in the cosmic rays seems to be the most
promising ways to search for neutralinos in these scenarios.Comment: 26 pages, 9 figure
- …
