5,819 research outputs found
Some Novel Contributions to Radiative B Decay in Supersymmetry without R-parity
We present a systematic analysis at the leading log order of the influence of
combination of bilinear and trilinear R-parity violating couplings on the decay
b-->s gamma. Such contributions have never been explored in the context of this
decay. We show that influence of charged-slepton-Higgs mixing mediated loops
can dominate the SM and MSSM contributions and hence can provide strong bounds
on the combination of bilinear-trilinear R-parity violating couplings. Such
contributions are also enhanced by large tan beta. With substantially extended
basis of operators (28 operators), we provide illustrative analytical formulae
of the major contributions to complement our complete numerical results which
demonstrate the importance of QCD running effects.Comment: 4 pages, 2 figure
A radiating dyon solution
We give a non-static exact solution of the Einstein-Maxwell equations (with
null fluid), which is a non-static magnetic charge generalization to the
Bonnor-Vaidya solution and describes the gravitational and electromagnetic
fields of a nonrotating massive radiating dyon. In addition, using the
energy-momentum pseudotensors of Einstein and Landau and Lifshitz we obtain the
energy, momentum, and power output of the radiating dyon and find that both
prescriptions give the same result.Comment: 9 pages, LaTe
Radiative spacetimes approaching the Vaidya metric
We analyze a class of exact type II solutions of the Robinson-Trautman family
which contain pure radiation and (possibly) a cosmological constant. It is
shown that these spacetimes exist for any sufficiently smooth initial data, and
that they approach the spherically symmetric Vaidya-(anti-)de Sitter metric. We
also investigate extensions of the metric, and we demonstrate that their order
of smoothness is in general only finite. Some applications of the results are
outlined.Comment: 12 pages, 3 figure
The Tolman-Bondi--Vaidya Spacetime: matching timelike dust to null dust
The Tolman-Bondi and Vaidya solutions are two solutions to Einstein equations
which describe dust particles and null fluid, respectively. We show that it is
possible to match the two solutions in one single spacetime, the
Tolman-Bondi--Vaidya spacetime. The new spacetime is divided by a null surface
with Tolman-Bondi dust on one side and Vaidya fluid on the other side. The
differentiability of the spacetime is discussed. By constructing a specific
solution, we show that the metric across the null surface can be at least
and the stress-energy tensor is continuous.Comment: 5 pages, no figur
Mixed potentials in radiative stellar collapse
We study the behaviour of a radiating star when the interior expanding,
shearing fluid particles are traveling in geodesic motion. We demonstrate that
it is possible to obtain new classes of exact solutions in terms of elementary
functions without assuming a separable form for the gravitational potentials or
initially fixing the temporal evolution of the model unlike earlier treatments.
A systematic approach enables us to write the junction condition as a Riccati
equation which under particular conditions may be transformed into a separable
equation. New classes of solutions are generated which allow for mixed spatial
and temporal dependence in the metric functions. We regain particular models
found previously from our general classes of solutions.Comment: 10 pages, To appear in J. Math. Phy
Quark Loop Contributions to Neutron, Deuteron, and Mercury EDMs from Supersymmetry without R parity
We present a detailed analysis of the neutron, deuteron and mercury electric
dipole moment from supersymmetry without R parity, focusing on the quark-scalar
loop contributions. Being proportional to top Yukawa and top mass, such
contributions are often large. Analytical expressions illustrating the explicit
role of the R-parity violating parameters are given following perturbative
diagonalization of mass-squared matrices for the scalars. Dominant
contributions come from the combinations for which
we obtain robust bounds. It turns out that neutron and deuteron EDMs receive
much stronger contributions than mercury EDM and any null result at the future
deuteron EDM experiment or Los Alamos neutron EDM experiment can lead to
extra-ordinary constraints on RPV parameter space. Even if R-parity violating
couplings are real, CKM phase does induce RPV contribution and for some cases
such a contribution is as strong as contribution from phases in the R-parity
violating couplings.Hence, we have bounds directly on even if the RPV parameters are all real.
Interestingly, even if slepton mass and/or is as high as 1 TeV, it
still leads to neutron EDM that is an order of magnitude larger than the
sensitivity at Los Alamos experiment. Since the results are not much sensitive
to , our constraints will survive even if other observables tighten
the constraints on .Comment: 16 pages, 10 figures, accepted for publication in Physical Review
Quantization in black hole backgrounds
Quantum field theory in a semiclassical background can be derived as an
approximation to quantum gravity from a weak-coupling expansion in the inverse
Planck mass. Such an expansion is studied for evolution on "nice-slices" in the
spacetime describing a black hole of mass M. Arguments for a breakdown of this
expansion are presented, due to significant gravitational coupling between
fluctuations, which is consistent with the statement that existing calculations
of information loss in black holes are not reliable. For a given fluctuation,
the coupling to subsequent fluctuations becomes of order unity by a time of
order M^3. Lack of a systematic derivation of the weakly-coupled/semiclassical
approximation would indicate a role for the non-perturbative dynamics of
gravity, and possibly for the proposal that such dynamics has an essentially
non-local quality.Comment: 28 pages, 4 figures, harvmac. v2: added refs, minor clarification
- …
