1,550 research outputs found
Combined Filtering and Parameter Estimation for Discrete-Time Systems Driven by Approximately White Gaussian Noise Disturbances
In the problem of combined filtering and parameter estimation one considers a stochastic dynamical system whose state x_t is only partially observed through an observation process y_t. The stochastic model for the process pair (x_t, y_t) depends furthermore on an unknown parameter theta. Given an observation history of the process y_t, the problem then consists in estimating recursively both the current state x_t of the system (filtering) as well as the value theta of the parameter (Bayesian parameter estimation).
The problem is a rather difficult one: Even if, conditionally on a given value of theta, the process pair (x_t, y_t) satisfies a linear-Gaussian model so that the filtering problem for x_t can be solved via the familiar Kalman-Bucy filter; when theta is unknown, the problem becomes a difficult nonlinear filtering problem.
The present paper, partly based on previous joint work of one of the authors, makes a contribution towards the solution of this problem in the case of discrete time and of a (conditionally on theta) linear model for x_t, y_t. The solution that is obtained is shown to be robust with respect to small variations in the a priori distributions in the model, in particular those of the disturbances
XANES Study Of The Radiation Damage On Alkanethiolates-Capped Au Nanoparticles
The radiation damage during XANES experiments on alkanethiols capped gold nanoparticles has been investigated. Different carbon length chains and nanoparticle sizes have been studied. Changes in the spectra after 45 minutes of irradiation, using a bend magnet, were observed for chains with more than 6 carbon atoms and are associated with the cleavage of S-C bonds and formation of atomic sulphur on the nanoparticle surface.Fil: Ramallo Lopez, Jose Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Giovanetti, Lisandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Visentin, F. C.. Centro Nacional de Pesquisa Em Energia E Materiais; BrasilFil: Requejo, Felix Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentin
Parental evaluation of a telemonitoring service for children with Type 1 Diabetes
Introduction In the past years, we developed a telemonitoring service for young patients affected by Type 1 Diabetes. That service provides data to the clinical staff and offers an important tool to the parents, that are able to oversee in real time their children. The aim of this work was to analyze the parents' perceived usefulness of the service. Methods The service was tested by the parents of 31 children enrolled in a seven-day clinical trial during a summer camp. To study the parents' perception we proposed and analyzed two questionnaires. A baseline questionnaire focused on the daily management and implications of their children's diabetes, while a post-study one measured the perceived benefits of telemonitoring. Questionnaires also included free text comment spaces. Results Analysis of the baseline questionnaires underlined the parents' suffering and fatigue: 51% of total responses showed a negative tendency and the mean value of the perceived quality of life was 64.13 in a 0-100 scale. In the post-study questionnaires about half of the parents believed in a possible improvement adopting telemonitoring. Moreover, the foreseen improvement in quality of life was significant, increasing from 64.13 to 78.39 ( p-value\u2009=\u20090.0001). The analysis of free text comments highlighted an improvement in mood, and parents' commitment was also proved by their willingness to pay for the service (median\u2009=\u2009200\u2009euro/year). Discussion A high number of parents appreciated the telemonitoring service and were confident that it could improve communication with physicians as well as the family's own peace of mind
A Kinematic Approach to Determining the Optimal Actuator Sensor Architecture for Space Robots
Autonomous space robots will be required for such future missions as the construction of large space structures and repairing disabled satellites. These robots will need to be precisely controlled. However, factors such as manipulator joint/actuator friction and spacecraft attitude control thruster inaccuracies can substantially degrade control system performance. Sensor-based control algorithms can be used to mitigate the effects of actuator error, but sensors can add substantially to a space system’s weight, complexity, and cost, and reduce its reliability. Here, a method is presented to determine the sensor architecture that uses the minimum number of sensors that can simultaneously compensate for errors and disturbance in a space robot’s manipulator joint actuators, spacecraft thrusters, and reaction wheels. The placement and minimal number of sensors is determined by analytically structuring the system into “canonical chains” that consist of the manipulator links and spacecraft with force/torque sensors placed between the space robot’s spacecraft and its manipulators. These chains are combined to determine the number of sensors needed for the entire system. Examples of one- and two-manipulator space robots are studied and the results are validated by simulation
Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities
A model for the onset of the reduction in SRF cavity quality factor, the
so-called Q-drop, at high accelerating electric fields is presented. Breakdown
of the surface barrier against magnetic flux penetration at the cavity equator
is considered to be the critical event that determines the onset of Q-drop. The
worst case of triangular grooves with low field of first flux penetration Hp,
as analyzed previously by Buzdin and Daumens, [1998 Physica C 294: 257], was
adapted. This approach incorporates both the geometry of the groove and local
contamination via the Ginzburg-Landau parameter kappa, so the proposed model
allows new comparisons of one effect in relation to the other. The model
predicts equivalent reduction of Hp when either roughness or contamination were
varied alone, so smooth but dirty surfaces limit cavity performance about as
much as rough but clean surfaces do. When in combination, contamination
exacerbates the negative effects of roughness and vice-versa. To test the model
with actual data, coupons were prepared by buffered chemical polishing and
electropolishing, and stylus profilometry was used to obtain distributions of
angles. From these data, curves for surface resistance generated by simple flux
flow as a function of magnetic field were generated by integrating over the
distribution of angles for reasonable values of kappa. This showed that
combined effects of roughness and contamination indeed reduce the Q-drop onset
field by ~30%, and that that contamination contributes to Q-drop as much as
roughness. The latter point may be overlooked by SRF cavity research, since
access to the cavity interior by spectroscopy tools is very difficult, whereas
optical images have become commonplace. The model was extended to fit cavity
test data, which indicated that reduction of the superconducting gap by
contaminants may also play a role in Q-drop.Comment: 15 pages with 7 figure
Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection
Automated analysis of retinal imaging using machine learning techniques for computer vision
There are almost two million people in the United Kingdom living with sight loss, including around 360,000 people who are registered as blind or partially sighted. Sight threatening diseases, such as diabetic retinopathy and age related macular degeneration have contributed to the 40% increase in outpatient attendances in the last decade but are amenable to early detection and monitoring. With early and appropriate intervention, blindness may be prevented in many cases.
Ophthalmic imaging provides a way to diagnose and objectively assess the progression of a number of pathologies including neovascular (“wet”) age-related macular degeneration (wet AMD) and diabetic retinopathy. Two methods of imaging are commonly used: digital photographs of the fundus (the ‘back’ of the eye) and Optical Coherence Tomography (OCT, a modality that uses light waves in a similar way to how ultrasound uses sound waves). Changes in population demographics and expectations and the changing pattern of chronic diseases creates a rising demand for such imaging. Meanwhile, interrogation of such images is time consuming, costly, and prone to human error. The application of novel analysis methods may provide a solution to these challenges.
This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients.
Through analysis of the images used in ophthalmology, along with relevant clinical and demographic information, Google DeepMind Health will investigate the feasibility of automated grading of digital fundus photographs and OCT and provide novel quantitative measures for specific disease features and for monitoring the therapeutic success
Synthesis, characterization, antibacterial and antitumoral activities of mononuclear zinc complexes containing tridentate amine based ligands with N3 or N2O donor groups
The synthesis and characterization of the four zinc(II) complexes [Zn(HL1)Cl-2] (1), [Zn(H2L2)Cl-2](2), [Zn(H2L3)Cl-2] (3) and[Zn(H2L4)Cl-2] (4), where HL1 = (bis-2-pyridylmethyl)amine, H2L2 = (2-hydroxybenzyl- 2-pyridylmethyl) amine, H2L3 = N-2[(pyridine-2-ylmethyl)amino)ethanol, H2L4 = 1-[(pyridine-2-ylmethyl)- amino]-propan-2-ol are reported; (3) and (4) are new while (2) was reported previously but its structure had not been determined. The complexes were characterized by elemental analysis, IR, UV-Vis and NMR spectroscopic, electrospray ionization mass spectrometry (ESI(+)-MS) and tandem mass spectrometry ESI(+)-MS/MS). X-ray diffraction studies were performed for complexes (1)-(3) revealing the presence of mononuclear structures in the solid state. The X-ray analyses of (1) and (3) demonstrate that HL1 and HL2 act as tridentate ligands, while the ligand H2L2 in (2) is bidentate. The cytotoxic properties of the ligands and of all the complexes were examined using human leukemia THP-1, U937 and Molt-4 cells. Complex (4) exhibited the highest cytotoxicity in this series with an IC50 value of 75 +/- 1 mu mol L (1) against U937 cells. Transmission electron microscopy (TEM) reveals ultrastructural changes typical of apoptotic cells. The induction of apoptosis was confirmed by the annexin V assay. The antimicrobial activity of complexes (1)-(4) was also investigated in vitro against four Gram-positive bacteria (ATCC10832, ATCC25923, COL) and the clinical Staphylococcus aureus isolate LSA88 (SEC/SEF/ TSST-1+). Complex (2) showed the most potent inhibitory activity, reaching almost 100% of inhibition against all strains tested. Morphological investigations using TEM indicate that the antibacterial activity of complex (2) may be associated with the inhibition of cell wall and therefore cell division. (C) 2014 Elsevier B. V. All rights reserved
- …
