38,583 research outputs found
Recommended from our members
Comparison of wind turbine tower failure modes under seismic and wind loads
This paper studies the structural responses and failure modes of a 1.5-MW horizontal-axis wind turbine under strong ground motions and wind loading. Ground motions were selected and scaled to match the two design response spectra given by the seismic code, and wind loads were generated considering tropical cyclone scenarios. Nonlinear dynamic time-history analyses were conducted and structural performances under wind loads as well as short- and long-period ground motions compared. The results show that under strong wind loads the collapse of the wind turbine tower is driven by the formation of a plastic hinge at the lower section of the tower. This area is also critical when the tower is subject to most ground motions. However, some short-period earthquakes trigger the collapse of the middle and upper parts of the tower due to the increased contribution of high-order vibration modes. Although long-period ground motions tend to result in greater structural responses, short-period earthquakes may cause brittle failure modes in which the full plastic hinge develops quickly in regions of the tower with only a moderate energy dissipation capacity. Based on these results, recommendations for future turbine designs are proposed
Sustainable Campus Community Engagement
Laser metal deposition (LMD) was applied to deposit Inconel 718 metal matrix composites reinforced with TiC particles. The influence of laser energy input per unit length on constitution phases, microstructures, hardness, and wear performance of LMD-processed TiC/Inconel 718 composites was studied. It revealed that the LMD-processed composites consisted of γ Ni-Cr solid solution matrix, the intermetallic precipitation phase γ′, and the TiC reinforcing phase. For the laser energy input per unit length of 80-120 kJ/m, a coherent interfacial layer with the thickness of 0.8-1.4 μm was formed between TiC reinforcing particles and the matrix, which was identified as (Ti,M)C (M=Nb and Mo) layer. Its formation was due to the reaction of the strong carbide-forming elements Nb and Mo of the matrix with the dissolved Ti and C on the surface of TiC particles. The microstructures of the TiC reinforcing phase experienced a successive change as laser energy input per unit length increased: Relatively coarsened poly-angular particles (80 kJ/m) - surface melted, smoothened TiC particles (≥100 kJ/m) - fully melted/precipitated, significantly refined TiC dendrites/particles (160 kJ/m). Using the laser energy input per unit length ≥100 kJ/m produced the fully dense composites having the uniformly dispersed TiC reinforcing particles. Either the formation of reinforcement/matrix interfacial layer or the refinement in TiC dendrites/particles microstructures enhanced the microhardness and wear performance of TiC/Inconel 718 composites
High energy neutrinos from magnetars
Magnetars can accelerate cosmic rays to high energies through the unipolar
effect, and are also copious soft photon emitters. We show that young,
fast-rotating magnetars whose spin and magnetic moment point in opposite
directions emit high energy neutrinos from their polar caps through photomeson
interactions. We identify a neutrino cut-off band in the magnetar
period-magnetic field strength phase diagram, corresponding to the photomeson
interaction threshold. Within uncertainties, we point out four possible
neutrino emission candidates among the currently known magnetars, the brightest
of which may be detectable for a chance on-beam alignment. Young magnetars in
the universe would also contribute to a weak diffuse neutrino background, whose
detectability is marginal, depending on the typical neutrino energy.Comment: emulateapj style, 6 pages, 1 figure, ApJ, v595, in press. Important
contributions from Dr. Harding added. Major revisions made. More conservative
and realistic estimates about the neutrino threshold condition and emission
efficiency performed. More realistic typical beaming angle and magnetar birth
rate adopte
Simulating the Initial Stage of Phenolic Resin Carbonization via the ReaxFF Reactive Force Field
Pyrolysis of phenolic resins leads to carbon formation. Simulating this resin-to-carbon process atomistically is a daunting task. In this paper, we attempt to model the initial stage of this process by using the ReaxFF reactive force field, which bridges quantum mechanical and molecular mechanical methods. We run molecular dynamics simulations to examine the evolution of small molecules at different temperatures. The main small-molecule products found include H_2O, H_2, CO, and C_2H_2. We find multiple pathways leading to H_2O formation, including a frequent channel via β-H elimination, which has not been proposed before. We determine the reaction barrier for H_2O formation from the reaction rates obtained at different temperatures. We also discuss the relevance of our simulations to previous experimental observations. This work represents a first attempt to model the resin-to-carbon process atomistically
Magnetization in the Superconducting State of UPt from Polarized Neutron Diffraction
The heavy fermion superconductor UPt is thought to have odd-parity, a
state for which the temperature dependence of the spin susceptibility is an
important signature. In order to address conflicting reports from two different
experiments, the NMR Knight shift and measurements of the anisotropy of the
upper critical field, we have measured the bulk susceptibility in a high
quality single crystal using polarized-neutron diffraction. A temperature
independent susceptibility was observed for through the transitions
between the normal state and the superconducting A-, B- and C-phases,
consistent with odd-parity, spin-triplet superconductivity.Comment: 5 pages, 4 figures. Submitted to Physical Review Letter
Compressive Inverse Scattering II. SISO Measurements with Born scatterers
Inverse scattering methods capable of compressive imaging are proposed and
analyzed. The methods employ randomly and repeatedly (multiple-shot) the
single-input-single-output (SISO) measurements in which the probe frequencies,
the incident and the sampling directions are related in a precise way and are
capable of recovering exactly scatterers of sufficiently low sparsity.
For point targets, various sampling techniques are proposed to transform the
scattering matrix into the random Fourier matrix. The results for point targets
are then extended to the case of localized extended targets by interpolating
from grid points. In particular, an explicit error bound is derived for the
piece-wise constant interpolation which is shown to be a practical way of
discretizing localized extended targets and enabling the compressed sensing
techniques.
For distributed extended targets, the Littlewood-Paley basis is used in
analysis. A specially designed sampling scheme then transforms the scattering
matrix into a block-diagonal matrix with each block being the random Fourier
matrix corresponding to one of the multiple dyadic scales of the extended
target. In other words by the Littlewood-Paley basis and the proposed sampling
scheme the different dyadic scales of the target are decoupled and therefore
can be reconstructed scale-by-scale by the proposed method. Moreover, with
probes of any single frequency \om the coefficients in the Littlewood-Paley
expansion for scales up to \om/(2\pi) can be exactly recovered.Comment: Add a new section (Section 3) on localized extended target
Analytical and numerical studies of central galactic outflows powered by tidal disruption events -- a model for the Fermi bubbles?
Capture and tidal disruption of stars by the supermassive black hole in the
Galactic center (GC) should occur regularly. The energy released and dissipated
by this processes will affect both the ambient environment of the GC and the
Galactic halo. A single star of super-Eddington eruption generates a subsonic
out ow with an energy release of more than erg, which still is not
high enough to push shock heated gas into the halo. Only routine tidal
disruption of stars near the GC can provide enough cumulative energy to form
and maintain large scale structures like the Fermi Bubbles. The average rate of
disruption events is expected to be ~ yr, providing
the average power of energy release from the GC into the halo of dW/dt ~
3*10 erg/s, which is needed to support the Fermi Bubbles. The GC black
hole is surrounded by molecular clouds in the disk, but their overall mass and
filling factor is too low to stall the shocks from tidal disruption events
significantly. The de facto continuous energy injection on timescales of Myr
will lead to the propagation of strong shocks in a density stratified Galactic
halo and thus create elongated bubble-like features, which are symmetric to the
Galactic midplane.Comment: 11 pages, 5 figures. The title and abstract have been changed.
Accepted by Astrophysical Journa
A cyclical period variation detected in the updated orbital period analysis of TV Columbae
The two CCD photometries of the intermediate polar TV Columbae are made for
obtaining the two updated eclipse timings with high precision. There is an
interval time \sim 17yr since the last mid-eclipse time observed in 1991. Thus,
the new mid-eclipse times can offer an opportunity to check the previous
orbital ephemerides. A calculation indicates that the orbital ephemeris derived
by Augusteijn et al. (1994) should be corrected. Based on the proper linear
ephemeris (Hellier, 1993), the new orbital period analysis suggests a cyclical
period variation in the O-C diagram of TV Columbae. Using Applegate's mechanism
to explain the periodic oscillation in O-C diagram, the required energy is
larger than that a M0-type star can afford over a complete variation period
\sim 31.0(\pm 3.0)yr. Thus, the light travel-time effect indicates that the
tertiary component in TV Columbae may be a dwarf with a low mass, which is near
the mass lower limit \sim 0.08Msun as long as the inclination of the third body
high enough.Comment: 10 pages, 5 figure
Magnetic field dependence of spin-lattice relaxation in the s state of BaKFeAs
The spatially averaged density of states, , of an unconventional d-wave
superconductor is magnetic field dependent, proportional to , owing to
the Doppler shift of quasiparticle excitations in a background of vortex
supercurrents[1,2]. This phenomenon, called the Volovik effect, has been
predicted to exist for a sign changing state [3], although it is absent
in a single band s-wave superconductor. Consequently, we expect there to be
Doppler contributions to the NMR spin-lattice relaxation rate, , for an state which will depend on magnetic field. We have
measured the As in a high-quality, single crystal of
BaKFeAs over a wide range of field up to 28 T.
Our spatially resolved measurements show that indeed there are Doppler
contributions to which increase closer to the vortex core, with a
spatial average proportional to , inconsistent with recent theory [4]Comment: 5 pages, 5 figure
- …
