66,405 research outputs found
Probing Neutral Majorana Fermion Edge Modes with Charge Transport
We propose two experiments to probe the Majorana fermion edge states that
occur at a junction between a superconductor and a magnet deposited on the
surface of a topological insulator. Combining two Majorana fermions into a
single Dirac fermion on a magnetic domain wall allows the neutral Majorana
fermions to be probed with charge transport. We will discuss a novel
interferometer for Majorana fermions, which probes their Z_2 phase. This setup
also allows the transmission of neutral Majorana fermions through a point
contact to be measured. We introduce a point contact formed by a
superconducting junction and show that its transmission can be controlled by
the phase difference across the junction. We discuss the feasibility of these
experiments using the recently discovered topological insulator Bi_2 Se_3.Comment: 4 page
Surface States of the Topological Insulator Bi_{1-x}Sb_x
We study the electronic surface states of the semiconducting alloy BiSb.
Using a phenomenological tight binding model we show that the Fermi surface of
the 111 surface states encloses an odd number of time reversal invariant
momenta (TRIM) in the surface Brillouin zone confirming that the alloy is a
strong topological insulator. We then develop general arguments which show that
spatial symmetries lead to additional topological structure, and further
constrain the surface band structure. Inversion symmetric crystals have 8 Z_2
"parity invariants", which include the 4 Z_2 invariants due to time reversal.
The extra invariants determine the "surface fermion parity", which specifies
which surface TRIM are enclosed by an odd number of electron or hole pockets.
We provide a simple proof of this result, which provides a direct link between
the surface states and the bulk parity eigenvalues. We then make specific
predictions for the surface state structure for several faces of BiSb. We next
show that mirror invariant band structures are characterized by an integer
"mirror Chern number", n_M. The sign of n_M in the topological insulator phase
of BiSb is related to a previously unexplored Z_2 parameter in the L point k.p
theory of pure Bi, which we refer to as the "mirror chirality", \eta. The value
of \eta predicted by the tight binding model for Bi disagrees with the value
predicted by a more fundamental pseudopotential calculation. This explains a
subtle disagreement between our tight binding surface state calculation and
previous first principles calculations on Bi. This suggests that the tight
binding parameters in the Liu Allen model of Bi need to be reconsidered.
Implications for existing and future ARPES experiments and spin polarized ARPES
experiments will be discussed.Comment: 15 pages, 7 figure
Recommended from our members
Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture.
The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism
Measurements of the Magnetic Field Dependence of Lambda in YBa_2Cu_3O_6.95: Results as a Function of Temperature and Field Orientation
We present measurements of the magnetic field dependence of the penetration
depth Lambda(H) for untwinned YBa_2Cu_3O_6.95 for temperatures from 1.2 to 70 K
in dc fields up to 42 gauss and directions 0, 45 and 90 degrees with respect to
the crystal b-axis. The experiment uses an ac susceptometer with fields applied
parallel to the ab-plane of thin platelet samples. The resolution is about 0.15
Angstroms in zero dc field, degrading to 0.2 or 0.3 Angstroms at the higher
fields. At low temperatures the field dependencies are essentially linear in H,
ranging from 0.04 Angstroms/gauss for Delta-Lambda_a to 0.10 Angstroms/gauss
for Delta-Lambda_b, values comparable to the T=0 Yip and Sauls prediction for a
d-wave superconductor. However, the systematics versus temperature and
orientation do not agree with the d-wave scenario probably due, in part, to
residual sample problems.Comment: 5 pages, 4 figure
Modulation of Neurally Mediated Vasodepression and Bradycardia by Electroacupuncture through Opioids in Nucleus Tractus Solitarius.
Stimulation of vagal afferent endings with intravenous phenylbiguanide (PBG) causes both bradycardia and vasodepression, simulating neurally mediated syncope. Activation of µ-opioid receptors in the nucleus tractus solitarius (NTS) increases blood pressure. Electroacupuncture (EA) stimulation of somatosensory nerves underneath acupoints P5-6, ST36-37, LI6-7 or G37-39 selectively but differentially modulates sympathoexcitatory responses. We therefore hypothesized that EA-stimulation at P5-6 or ST36-37, but not LI6-7 or G37-39 acupoints, inhibits the bradycardia and vasodepression through a µ-opioid receptor mechanism in the NTS. We observed that stimulation at acupoints P5-6 and ST36-37 overlying the deep somatosensory nerves and LI6-7 and G37-39 overlying cutaneous nerves differentially evoked NTS neural activity in anesthetized and ventilated animals. Thirty-min of EA-stimulation at P5-6 or ST36-37 reduced the depressor and bradycardia responses to PBG while EA at LI6-7 or G37-39 did not. Congruent with the hemodynamic responses, EA at P5-6 and ST36-37, but not at LI6-7 and G37-39, reduced vagally evoked activity of cardiovascular NTS cells. Finally, opioid receptor blockade in the NTS with naloxone or a specific μ-receptor antagonist reversed P5-6 EA-inhibition of the depressor, bradycardia and vagally evoked NTS activity. These data suggest that point specific EA stimulation inhibits PBG-induced vasodepression and bradycardia responses through a μ-opioid mechanism in the NTS
elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves.
The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P < 0.05). The majority of these elPBN neurons contain vesicular glutamate transporter 3. In cats, epicardial bradykinin and electrical stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P < 0.05) after blockade of glutamate receptors with iontophoresis of kynurenic acid (Kyn, 25 mM). In separate cats, microinjection of Kyn (1.25 nmol/50 nl) into the elPBN reduced rVLM activity evoked by both bradykinin and electrical stimulation (n = 5, P < 0.05). Excitation of the elPBN with microinjection of dl-homocysteic acid (2 nmol/50 nl) significantly increased basal and CSAN-evoked rVLM activity. However, the enhanced rVLM activity induced by dl-homocysteic acid injected into the elPBN was reversed following iontophoresis of Kyn into the rVLM (n = 7, P < 0.05). These data suggest that cardiac sympathetic afferent stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway
Photochemical colour change for traditional watercolour pigments in low oxygen levels
An investigation for light exposure on pigments in low-oxygen environments (in the range 0–5% oxygen) was conducted using a purpose-built automated microfadometer for a large sample set including multiple samples of traditional watercolour pigments from nineteenth-century and twentieth-century sources, selected for concerns over their stability in anoxia. The pigments were prepared for usage in watercolour painting: ground and mixed in gum Arabic and applied to historically accurate gelatine glue-sized cotton and linen-based papers. Anoxia benefited many colorants and no colorant fared worse in anoxia than in air, with the exception of Prussian blue and Prussian green (which contains Prussian blue). A Prussian blue sampled from the studio materials of J.M.W. Turner (1775 − 1851) was microfaded in different environments (normal air (20.9% oxygen) 0, 1, 2, 3.5, or 5% oxygen in nitrogen) and the subsequent dark behaviour was measured. The behaviour of the sample (in normal air, anoxia, and 5% oxygen in nitrogen) proved to be consistent with the 55 separately sourced Prussian blue samples. When exposed to light in 5% oxygen in nitrogen, Prussian blue demonstrated the same light stability as in air (at approximately 21°C and 1 atmosphere). Storage in 5% oxygen is proposed for ‘anoxic’ display of paper-based artworks that might contain Prussian blue, to protect this material while reducing light-induced damage to other components of a watercolour, including organic colorants and the paper support
Probing the Inflow/Out-flow and Accretion Disk of Cyg X-1 in the High State with HETG/Chandra
Cyg X-1 was observed in the high state at the conjunction orbital phase (0)
with HETG/Chandra. Strong and asymmetric absorption lines of highly ionized
species were detected, such as Fe XXV, Fe XXIV, Fe XXIII, Si XIV, S XVI, Ne X,
and etc. In the high state the profile of the absorption lines are composed of
an extended red wing and a less extended blue wing. The red wings of higher
ionized species are more extended than that of lower ionized species. The
detection of these lines provides a way to probe the properties of the flow
around the companion and the black hole in Cyg X-1 during the high state. A
broad emission feature around 6.5 keV was significantly detected from the both
spectra of HETG/Chandra and PCA/RXTE. This feature appears to be symmetric and
can be fitted with a Gaussian function rather than the Laor disk line model of
fluorescent Fe K line from an accretion disk. The implications of
these results on the structure of the accretion flow of Cyg X-1 in the high
state are discussed.Comment: 16 pages, 4 fiugres. accepted for publication in the v597 n2 ApJ
November 10, 2003 issu
- …
