132,444 research outputs found
Development of a Straw Tube Chamber with Pickup-Pad Readout
We have developed a straw tube chamber with pickup-pad readout. The mechanism
for signal pickup, the size of the pickup signal, and the distribution of
signals among neighboring pads are discussed. We have tested a prototype
chamber in a beamtest at Brookhaven National laboratory and have measured
chamber efficiencies in excess of 99%.Comment: 7 pages, 8 figures, 2 tables. Talk presented at DPF '99 Meeting, UCL
Recommended from our members
Coupled thermo-mechanical damage modelling for structural steel in fire conditions
This paper aims at developing a coupled thermo-mechanical damage model for structural 6 steel at elevated temperatures. The need for adequate modelling of steel deterioration behaviour 7 remains a challenging task in structural fire engineering because of the complexity inherent in 8 the damage states of steel under combined actions of mechanical and fire loading. A fully three9 dimensional damage-coupled constitutive model is developed in this work based on the hypothesis 10 of effective stress space and isotropic damage theory. The new coupling model, adapted from 11 an enhanced Lemaitre’s ductile damage equation and taking into account temperature-dependent 12 thermal degradation, is a phenomenological approach where the underlying mechanisms that govern 13 the damage processes have been retained. The proposed damage model comprises a limited number 14 of parameters that could be identified using unloading slopes of stress-strain relationships through 15 tensile coupon tests. The proposed damage model is successfully implemented in the finite element 16 software ABAQUS and validated against a comprehensive range of experimental results. The 17 damage-affected structural response is accurately reproduced under various loading conditions and 18 a wide temperature range, demonstrating that the proposed damage model is a useful tool in giving a 19 realistic representation of steel deterioration behaviour for structural fire engineering applications
Phosphoric acid fuel cell power plant system performance model and computer program
A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels
Dispersive Readout of a Few-Electron Double Quantum Dot with Fast rf Gate-Sensors
We report the dispersive charge-state readout of a double quantum dot in the
few-electron regime using the in situ gate electrodes as sensitive detectors.
We benchmark this gate-sensing technique against the well established quantum
point contact (QPC) charge detector and find comparable performance with a
bandwidth of 10 MHz and an equivalent charge sensitivity of 6.3 x 10-3 e/ \sqrt
Hz. Dispersive gate-sensing alleviates the burden of separate charge detectors
for quantum dot systems and promises to enable readout of qubits in scaled-up
arrays
Enthalpies of formation of lanthanide oxyapatite phases
A family of lanthanide silicates adopts an oxyapatite-like structure with structural formula Ln9.33∎0.67(SiO4)6O2 (Ln 4 La, Sm, Nd, Gd, ∎ = vacancy). The enthalpies of solution, DHS, for these materials and their corresponding binary oxides were determined by high-temperature oxide melt solution calorimetry using molten 2PbO·B2O3 at 1078 K. These data were used to complete thermodynamic cycles to calculate
enthalpies of formation from the oxides, ΔHs f-oxides (kJ/mol): La9.33∎0.67(SiO4)6O2 = −776.3 ± 17.9, Nd9.33∎0.67(SiO4)6O2 = −760.4 ± 31.9, Sm9.33∎0.67(SiO4)6O2 = −590.3 ± 18.6, and Gd9.33∎0.67(SiO4)6O2 = −446.9 ± 21.9. Reference data were used to calculate the standard enthalpies of formation from the elements, ΔH0 f (kJ/mol): La9.33∎0.67(SiO4)6O2 = −14611.0 ± 19.4, Nd9.33∎0.67(SiO4)6O2 = −14661.5 ± 32.2, Sm9.33∎0.67(SiO4)6O2 = −14561.7 ± 20.8, and Gd9.33∎0.67(SiO4)6O2 = −14402.7 ± 28.2. The formation enthalpies become more endothermic as the ionic radius of the lanthanide ion decreases
Toolbox for entanglement detection and fidelity estimation
The determination of the state fidelity and the detection of entanglement are
fundamental problems in quantum information experiments. We investigate how
these goals can be achieved with a minimal effort. We show that the fidelity of
GHZ and W states can be determined with an effort increasing only linearly with
the number of qubits. We also present simple and robust methods for other
states, such as cluster states and states in decoherence-free subspaces.Comment: 5 pages, no figures, v3: final version, to appear as a Rapid
Communication in PR
Duration distributions for different softness groups of gamma-ray bursts
Gamma-ray bursts (GRBs) are divided into two classes according to their
durations. We investigate if the softness of bursts plays a role in the
conventional classification of the objects. We employ the BATSE (Burst and
Transient Source Experiment) catalog and analyze the duration distributions of
different groups of GRBs associated with distinct softness. Our analysis
reveals that the conventional classification of GRBs with the duration of
bursts is influenced by the softness of the objects. There exits a bimodality
in the duration distribution of GRBs for each group of bursts and the time
position of the dip in the bimodality histogram shifts with the softness
parameter. Our findings suggest that the conventional classification scheme
should be modified by separating the two well-known populations in different
softness groups, which would be more reasonable than doing so with a single
sample. According to the relation between the dip position and the softness
parameter, we get an empirical function that can roughly set apart the
short-hard and long-soft bursts: , where is the softness parameter adopted in this paper.Comment: 20 pages, 10 figure
A Black Hole in the Galactic Center Complex IRS 13E?
The IRS 13E complex is an unusual concentration of massive, early-type stars
at a projected distance of ~0.13 pc from the Milky Way's central supermassive
black hole Sagittarius A* (Sgr A*). Because of their similar proper motion and
their common nature as massive, young stars it has recently been suggested that
IRS 13E may be the remnant of a massive stellar cluster containing an
intermediate-mass black hole (IMBH) that binds its members gravitationally in
the tidal field of Sgr A*. Here, we present an analysis of the proper motions
in the IRS~13E environment that combines the currently best available data with
a time line of 10 years. We find that an IMBH in IRS 13E must have a minimum
mass of ~10^4 solar masses in order to bind the source complex gravitationally.
This high mass limit in combination with the absence so far of compelling
evidence for a non-thermal radio and X-ray source in IRS 13E make it appear
unlikely that an IMBH exists in IRS 13E that is sufficiently massive to bind
the system gravitationally.Comment: accepted by AP
Manual of phosphoric acid fuel cell power plant optimization model and computer program
An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem
- …
