9,701 research outputs found
An integrated wind risk warning model for urban rail transport in Shanghai, China
The integrated wind risk warning model for rail transport presented has four elements:
Background wind data, a wind field model, a vulnerability model, and a risk model. Background
wind data uses observations in this study. Using the wind field model with effective surface
roughness lengths, the background wind data are interpolated to a 30-m resolution grid. In the
vulnerability model, the aerodynamic characteristics of railway vehicles are analyzed with CFD
(Computational Fluid Dynamics) modelling. In the risk model, the maximum value of three
aerodynamic forces is used as the criteria to evaluate rail safety and to quantify the risk level under
extremely windy weather. The full model is tested for the Shanghai Metro Line 16 using wind
conditions during Typhoon Chan-hom. The proposed approach enables quick quantification of real-
time safety risk levels during typhoon landfall, providing sophisticated warning information for
rail vehicle operation safety
Mean-Field Description of Phase String Effect in the Model
A mean-field treatment of the phase string effect in the model is
presented. Such a theory is able to unite the antiferromagnetic (AF) phase at
half-filling and metallic phase at finite doping within a single theoretical
framework. We find that the low-temperature occurrence of the AF long range
ordering (AFLRO) at half-filling and superconducting condensation in metallic
phase are all due to Bose condensations of spinons and holons, respectively, on
the top of a spin background described by bosonic resonating-valence-bond (RVB)
pairing. The fact that both spinon and holon here are bosonic objects, as the
result of the phase string effect, represents a crucial difference from the
conventional slave-boson and slave-fermion approaches. This theory also allows
an underdoped metallic regime where the Bose condensation of spinons can still
exist. Even though the AFLRO is gone here, such a regime corresponds to a
microscopic charge inhomogeneity with short-ranged spin ordering. We discuss
some characteristic experimental consequences for those different metallic
regimes. A perspective on broader issues based on the phase string theory is
also discussed.Comment: 18 pages, five figure
Bosonic resonating valence bond wave function for doped Mott insulators
We propose a new class of ground states for doped Mott insulators in the
electron second-quantization representation. They are obtained from a bosonic
resonating valence bond (RVB) theory of the t-J model. At half filling, the
ground state describes spin correlations of the S=1/2 Heisenberg model very
accurately. Its spin degrees of freedom are characterized by RVB pairing of
spins, the size of which decreases continuously as holes are doped into the
system. Charge degrees of freedom emerge upon doping and are described by
twisted holes in the RVB background. We show that the twisted holes exhibit an
off diagonal long range order (ODLRO) in the pseudogap ground state, which has
a finite pairing amplitude, but is short of phase coherence. Unpaired spins in
such a pseudogap ground state behave as free vortices, preventing
superconducting phase coherence. The existence of nodal quasiparticles is also
ensured by such a hidden ODLRO in the ground state, which is
non-Fermi-liquid-like in the absence of superconducting phase coherence. Two
distinct types of spin excitations can also be constructed. The superconducting
instability of the pseudogap ground state is discussed and a d-wave
superconducting ground state is obtained. This class of pseudogap and
superconducting ground states unifies antiferromagnetism, pseudogap,
superconductivity, and Mott physics into a new state of matter.Comment: 28 pages, 5 figures, final version to appear in Phys. Rev.
Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity
In this article I give a pedagogical illustration of why the essential
problem of high-Tc superconductivity in the cuprates is about how an
antiferromagnetically ordered state can be turned into a short-range state by
doping. I will start with half-filling where the antiferromagnetic ground state
is accurately described by the Liang-Doucot-Anderson (LDA) wavefunction. Here
the effect of the Fermi statistics becomes completely irrelevant due to the no
double occupancy constraint. Upon doping, the statistical signs reemerge,
albeit much reduced as compared to the original Fermi statistical signs. By
precisely incorporating this altered statistical sign structure at finite
doping, the LDA ground state can be recast into a short-range antiferromagnetic
state. Superconducting phase coherence arises after the spin correlations
become short-ranged, and the superconducting phase transition is controlled by
spin excitations. I will stress that the pseudogap phenomenon naturally emerges
as a crossover between the antiferromagnetic and superconducting phases. As a
characteristic of non Fermi liquid, the mutual statistical interaction between
the spin and charge degrees of freedom will reach a maximum in a
high-temperature "strange metal phase" of the doped Mott insulator.Comment: 12 pages, 12 figure
Magnetic Incommensurability in Doped Mott Insulator
In this paper we explore the incommensurate spatial modulation of spin-spin
correlations as the intrinsic property of the doped Mott insulator, described
by the model. We show that such an incommensurability is a direct
manifestation of the phase string effect introduced by doped holes in both one-
and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin
susceptibility in momentum space are in agreement with the neutron-scattering
measurement of cuprate superconductors in both position and doping dependence.
In particular, this incommensurate structure can naturally reconcile the
neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure
Delocalization of electrons in a Random Magnetic Field
Delocalization problem for a two-dimensional non-interacting electron system
is studied under a random magnetic field. With the presence of a random
magnetic field, the Hall conductance carried by each eigenstate can become
nonzero and quantized in units of . Extended states are characterized by
nonzero Hall conductance, and by studying finite-size scaling of the density of
extended states, an insulator-metal phase transition is revealed. The metallic
phase is found at the center of energy band which is separated from the
localized states at the band tails by critical energies . Both
localization exponent and the critical energy are shown to be dependent
on the strength of random magnetic field.Comment: 9 pages, Revtex, 3 figures available upon reques
Saltation transport on Mars
We present the first calculation of saltation transport and dune formation on
Mars and compare it to real dunes. We find that the rate at which grains are
entrained into saltation on Mars is one order of magnitude higher than on
Earth. With this fundamental novel ingredient, we reproduce the size and
different shapes of Mars dunes, and give an estimate for the wind velocity on
Mars.Comment: 4 pages, 3 figure
- …
