17,884 research outputs found
Implantable RF-coiled chip packaging
In this paper, we present an embedded chip integration
technology that utilizes silicon housings and flexible
parylene radio frequency (RF) coils. As a demonstration
of this technology, a flexible parylene RF coil has been
integrated with an RF identification (RFID) chip. The coil
has an inductance of 16 μH, with two layers of metal
completely encapsulated in parylene-C. The functionality
of the embedded chip is verified using an RFID reader
module. Accelerated-lifetime soak testing has been
performed in saline, and the results show that the silicon
chip is well protected and the lifetime of our
parylene-encapsulated RF coil at 37 °C is more than 20
years
A study of longitudianl oscillations of propellant tanks and wave propagations in feed lines. Part IV - Longitudinal oscillation of a propellant-filled flexible hemispherical tank
Longitudinal oscillation of propellant-filled flexible hemispherical tan
A study of longitudinal oscillations of propellant tanks and wave propagations in feed lines. Part V - Longitudinal oscillation of a propellant-filled flexible oblate spheroidal tank
Analytical method for determining axisymmetric longitudinal mode shapes and frequencies of incompressible and inviscid fluid in pressurized flexible oblate spheroidal propellant tan
Micro Balloon Actuators for Aerodynamic Control
A robust, large-force, large-deflection micro balloon actuator for aerodynamic (manoeuvring) control of transonic aircraft has been developed. Using a novel process, high yield linear arrays of silicone balloons on a robust silicon substrate have been fabricated that can deflect vertically in excess of one mm. Balloon actuators have been tested under cyclic conditions to assess reliability. The actuators have been characterized in a wind tunnel to assess their suitability as aerodynamic control surfaces and flight-tested on a jet fighter to assess their resistance to varied temperatures and pressures at high velocity
Electrolysis-based diaphragm actuators
This work presents a new electrolysis-based microelectromechanical systems (MEMS) diaphragm actuator. Electrolysis is a technique for converting electrical energy to pneumatic energy. Theoretically electrolysis can achieve a strain of 136 000% and is capable of generating a pressure above 200 MPa. Electrolysis actuators require modest electrical power and produce minimal heat. Due to the large volume expansion obtained via electrolysis, small actuators can create a large force. Up to 100 µm of movement was achieved by a 3 mm diaphragm. The actuator operates at room temperature and has a latching and reversing capability
Flexible parylene actuator for micro adaptive flow control
This paper describes the first flexible parylene electrostatic actuator valves intended for micro adaptive flow control for the future use on the wings of micro-air-vehicle (MAV). The actuator diaphragm is made of two layers of parylene membranes with offset vent holes. Without electrostatic actuation, air can move freely from one side of the skin to the other side through the vent holes. With actuation, these vent holes are sealed and the airflow is controlled. The membrane behaves as a complete diaphragm.
We have successfully demonstrated this function using a 2-mm x 2-mm parylene diaphragm electrostatic actuator valves. This work also includes the novel anti-stiction technology that is crucial to make such large-area parylene actuator diaphragm with the combined use of anti-stiction posts, self-assembled monolayers (SAM), surface roughening, and bromine trifluoride (BrFe) dry etching. With the help of SAM treatment, the operating voltage is lowered from 30 volts to 13 volts. The load deflection method is then used to measure the effective thickness of the composite
diaphragm. The flexible parylene diaphragm can be deflected up to 100 μm when 150 Torr of pressure is applied. The result is fitted into a theoretical model and yields an effective thickness of 5.9 μm, which is agreeable with the actual thickness of 5.6 μm, thus proves the functionality of the device
Some Experimental Signatures to look for Time-reversal Violating superconductors
We discuss some experimental signatures associated with the topological
structures of unconventional superconductor order parameters of form
, where , or . Specifically, we study
the topological surface states on the and equivalent surfaces of such
superconductors which are observable in Andreev tunneling experiments, as well
as evaluate the magnetic flux trapped in superconducting rings of such
superconductors with multiple grain-boundary Josephson junctions. Previous
experiments are examined and several new experiments suggested.Comment: 11 pages, 3 figure
A MEMS electrostatic particle transportation system
We demonstrate here an electrostatic MEMS system
capable of transporting particles 5-10μm in diameter in
air. This system consists of 3-phase electrode arrays
covered by insulators (Figs. 1, 2). Extensive testing of
this system has been done using a variety of insulation
materials (silicon nitride, photoresist, and Teflon),
thickness (0- 12μm), particle sizes (1-10μm), particle
materials (metal, glass, polystyrene, spores, etc),
waveforms, frequencies, and voltages. Although
previous literature [1-2] claimed it impractical to
electrostatically transport particles with sizes 5-10μm
due to complex surface forces, this effort actually
shows it feasible (as high as 90% efficiency) with the
optimal combination of insulation thickness, electrode
geometry, and insulation material. Moreover, we suggest a qualitative theory for our particle transportation system which is consistent with our data and finite-element electrostatic simulations
- …
