2,216 research outputs found
Area-Constrained Planar Elastica
We determine the equilibria of a rigid loop in the plane, subject to the
constraints of fixed length and fixed enclosed area. Rigidity is characterized
by an energy functional quadratic in the curvature of the loop. We find that
the area constraint gives rise to equilibria with remarkable geometrical
properties: not only can the Euler-Lagrange equation be integrated to provide a
quadrature for the curvature but, in addition, the embedding itself can be
expressed as a local function of the curvature. The configuration space is
shown to be essentially one-dimensional, with surprisingly rich structure.
Distinct branches of integer-indexed equilibria exhibit self-intersections and
bifurcations -- a gallery of plots is provided to highlight these findings.
Perturbations connecting equilibria are shown to satisfy a first order ODE
which is readily solved. We also obtain analytical expressions for the energy
as a function of the area in some limiting regimes.Comment: 23 pages, several figures. Version 2: New title. Changes in the
introduction, addition of a new section with conclusions. Figure 14 corrected
and one reference added. Version to appear in PR
Can Electric Field Induced Energy Gaps In Metallic Carbon Nanotubes?
The low-energy electronic structure of metallic single-walled carbon nanotube
(SWNT) in an external electric field perpendicular to the tube axis is
investigated. Based on tight-binding approximation, a field-induced energy gap
is found in all (n, n) SWNTs, and the gap shows strong dependence on the
electric field and the size of the tubes. We numerically find a universal
scaling that the gap is a function of the electric field and the radius of
SWNTs, and the results are testified by the second-order perturbation theory in
weak field limit. Our calculation shows the field required to induce a 0.1
gap in metallic SWNTs can be easily reached under the current
experimental conditions. It indicates a kind of possibility to apply nanotubes
to electric signal-controlled nanoscale switching devices
Primary role of the barely occupied states in the charge density wave formation of NbSe2
NbSe2 is a prototypical charge-density-wave (CDW) material, whose mechanism
remains mysterious so far. With angle resolved photoemission spectroscopy, we
mapped out the CDW gap and recovered the long-lost nesting condition over a
large broken-honeycomb region in the Brillouin zone, which consists of six
saddle band point regions with high density of states (DOS), and large regions
away from Fermi surface with negligible DOS at the Fermi energy. We show that
the major contributions to the CDW come from these barely occupied states
rather than the saddle band points. Our findings not only resolve a long
standing puzzle, but also overthrow the conventional wisdom that CDW is
dominated by regions with high DOS.Comment: 5 pages, 4 figure
Molecular Motor of Double-Walled Carbon Nanotube Driven by Temperature Variation
An elegant formula for coordinates of carbon atoms in a unit cell of a
single-walled nanotube (SWNT) is presented and a new molecular motor of
double-walled carbon nanotube whose inner tube is a long (8,4) SWNT and outer
tube a short (14,8) SWNT is constructed. The interaction between inner an outer
tubes is analytically derived by summing the Lennard-Jones potentials between
atoms in inner and outer tubes. It is proved that the molecular motor in a
thermal bath exhibits a directional motion with the temperature variation of
the bath.Comment: 9 pages, 4 figures, revtex
Linear response theory and transient fluctuation theorems for diffusion processes: a backward point of view
On the basis of perturbed Kolmogorov backward equations and path integral
representation, we unify the derivations of the linear response theory and
transient fluctuation theorems for continuous diffusion processes from a
backward point of view. We find that a variety of transient fluctuation
theorems could be interpreted as a consequence of a generalized
Chapman-Kolmogorov equation, which intrinsically arises from the Markovian
characteristic of diffusion processes
Theory on quench-induced pattern formation: Application to the isotropic to smectic-A phase transitions
During catastrophic processes of environmental variations of a thermodynamic
system, such as rapid temperature decreasing, many novel and complex patterns
often form.
To understand such phenomena, a general mechanism is proposed based on the
competition between heat transfer and conversion of heat to other energy forms.
We apply it to the smectic-A filament growth process during quench-induced
isotropic to smectic-A phase transition. Analytical forms for the buckling
patterns are derived and we find good agreement with experimental observation
[Phys. Rev. {\bf E55} (1997) 1655]. The present work strongly indicates that
rapid cooling will lead to structural transitions in the smectic-A filament at
the molecular level to optimize heat conversion. The force associated with this
pattern formation process is estimated to be in the order of
piconewton.Comment: 9 pages in RevTex form, with 3 postscript figures. Accepted by PR
Bending and Base-Stacking Interactions in Double-Stranded Semiflexible Polymer
Simple expressions for the bending and the base-stacking energy of
double-stranded semiflexible biopolymers (such as DNA and actin) are derived.
The distribution of the folding angle between the two strands is obtained by
solving a Schr\"{o}dinger equation variationally. Theoretical results based on
this model on the extension versus force and extension versus degree of
supercoiling relations of DNA chain are in good agreement with the experimental
observations of Cluzel {\it et al.} [Science {\bf 271}, 792 (1996)], Smith {\it
et al.} [{\it ibid.} {\bf 271}, 795 (1996)], and Strick {\it et al.} [{\it
ibid.} {\bf 271}, 1835 (1996)].Comment: 8 pages in Revtex format, with 4 EPS figure
Rigid Chiral Membranes
Statistical ensembles of flexible two-dimensional fluid membranes arise
naturally in the description of many physical systems. Typically one encounters
such systems in a regime of low tension but high stiffness against bending,
which is just the opposite of the regime described by the Polyakov string. We
study a class of couplings between membrane shape and in-plane order which
break 3-space parity invariance. Remarkably there is only {\it one} such
allowed coupling (up to boundary terms); this term will be present for any
lipid bilayer composed of tilted chiral molecules. We calculate the
renormalization-group behavior of this relevant coupling in a simplified model
and show how thermal fluctuations effectively reduce it in the infrared.Comment: 11 pages, UPR-518T (This replaced version has fonts not used
removed.
Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere
Perfluorocarbons (PFCs) are potent greenhouse gases with global warming potentials up to several thousand times greater than CO2 on a 100-year time horizon. The lack of any significant sinks for PFCs means that they have long atmospheric lifetimes of the order of thousands of years. Anthropogenic production is thought to be the only source for most PFCs. Here we report an update on the global atmospheric abundances of the following PFCs, most of which have for the first time been analytically separated according to their isomers: c-octafluorobutane (c-C4F8), n-decafluorobutane (n-C4F10), n-dodecafluoropentane (n-C5F12), n-tetradecafluorohexane (n-C6F14), and n-hexadecafluoroheptane (n-C7F16). Additionally, we report the first data set on the atmospheric mixing ratios of perfluoro-2-methylpentane (i-C6F14). The existence and significance of PFC isomers have not been reported before, due to the analytical challenges of separating them. The time series spans a period from 1978 to the present. Several data sets are used to investigate temporal and spatial trends of these PFCs: time series of air samples collected at Cape Grim, Australia, from 1978 to the start of 2018; a time series of air samples collected between July 2015 and April 2017 at Tacolneston, UK; and intensive campaign-based sampling collections from Taiwan. Although the remote “background” Southern Hemispheric Cape Grim time series indicates that recent growth rates of most of these PFCs are lower than in the 1990s, we continue to see significantly increasing mixing ratios that are between 6 % and 27 % higher by the end of 2017 compared to abundances measured in 2010. Air samples from Tacolneston show a positive offset in PFC mixing ratios compared to the Southern Hemisphere baseline. The highest mixing ratios and variability are seen in air samples from Taiwan, which is therefore likely situated much closer to PFC sources, confirming predominantly Northern Hemispheric emissions for most PFCs. Even though these PFCs occur in the atmosphere at levels of parts per trillion molar or less, their total cumulative global emissions translate into 833 million metric tonnes of CO2 equivalent by the end of 2017, 23 % of which has been emitted since 2010. Almost two-thirds of the CO2 equivalent emissions within the last decade are attributable to c-C4F8, which currently also has the highest emission rates that continue to grow. Sources of all PFCs covered in this work remain poorly constrained and reported emissions in global databases do not account for the abundances found in the atmosphere
- …
