1,899 research outputs found
Sodium vacancy ordering and the co-existence of localized spins and itinerant charges in NaxCoO2
The sodium cobaltate family (NaxCoO2) is unique among transition metal oxides
because the Co sits on a triangular lattice and its valence can be tuned over a
wide range by varying the Na concentration x. Up to now detailed modeling of
the rich phenomenology (which ranges from unconventional superconductivity to
enhanced thermopower) has been hampered by the difficulty of controlling pure
phases. We discovered that certain Na concentrations are specially stable and
are associated with superlattice ordering of the Na clusters. This leads
naturally to a picture of co-existence of localized spins and itinerant charge
carriers. For x = 0.84 we found a remarkably small Fermi energy of 87 K. Our
picture brings coherence to a variety of measurements ranging from NMR to
optical to thermal transport. Our results also allow us to take the first step
towards modeling the mysterious ``Curie-Weiss'' metal state at x = 0.71. We
suggest the local moments may form a quantum spin liquid state and we propose
experimental test of our hypothesis.Comment: 16 pages, 5 figure
Fundamentals of microcrack nucleation mechanics
A foundation for ultrasonic evaluation of microcrack nucleation mechanics is identified in order to establish a basis for correlations between plane strain fracture toughness and ultrasonic factors through the interaction of elastic waves with material microstructures. Since microcracking is the origin of (brittle) fracture, it is appropriate to consider the role of stress waves in the dynamics of microcracking. Therefore, the following topics are discussed: (1) microstress distributions with typical microstructural defects located in the stress field; (2) elastic wave scattering from various idealized defects; and (3) dynamic effective-properties of media with randomly distributed inhomogeneities
The first products made in space: Monodisperse latex particles
The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles
Magnetothermopower and Magnetoresistivity of RuSr2Gd1-xLaxCu2O8 (x=0, 0.1)
We report measurements of magnetothermopower and magnetoresistivity as a
function of temperature on RuSr2Gd1-xLaxCu2O8 (x = 0, 0.1). The normal-state
thermopower shows a dramatic decrease after applying a magnetic field of 5 T,
whereas the resistivity shows only a small change after applying the same
field. Our results suggest that RuO2 layers are conducting and the magnetic
field induced decrease of the overall thermopower is caused by the decrease of
partial thermopower decrease associated with the spin entropy decrease of the
carriers in the RuO2 layers.Comment: 21 pages, 6 figure
An Empirical Charge Transfer Potential with Correct Dissociation Limits
The empirical valence bond (EVB) method [J. Chem. Phys. 52, 1262 (1970)] has
always embodied charge transfer processes. The mechanism of that behavior is
examined here and recast for use as a new empirical potential energy surface
for large-scale simulations. A two-state model is explored. The main features
of the model are: (1) Explicit decomposition of the total system electron
density is invoked; (2) The charge is defined through the density decomposition
into constituent contributions; (3) The charge transfer behavior is controlled
through the resonance energy matrix elements which cannot be ignored; and (4) A
reference-state approach, similar in spirit to the EVB method, is used to
define the resonance state energy contributions in terms of "knowable"
quantities. With equal validity, the new potential energy can be expressed as a
nonthermal ensemble average with a nonlinear but analytical charge dependence
in the occupation number. Dissociation to neutral species for a gas-phase
process is preserved. A variant of constrained search density functional theory
is advocated as the preferred way to define an energy for a given charge.Comment: Submitted to J. Chem. Phys. 11/12/03. 14 pages, 8 figure
Magnetoresistance Anomalies in (Ga,Mn)As Epilayers with Perpendicular Magnetic Anisotropy
We report the observation of anomalies in the longitudinal magnetoresistance
of tensile-strained (Ga,Mn)As epilayers with perpendicular magnetic anisotropy.
Magnetoresistance measurements carried out in the planar geometry (magnetic
field parallel to the current density) reveal "spikes" that are antisymmetric
with respect to the direction of the magnetic field. These anomalies always
occur during magnetization reversal, as indicated by a simultaneous change in
sign of the anomalous Hall effect. The data suggest that the antisymmetric
anomalies originate in anomalous Hall effect contributions to the longitudinal
resistance when domain walls are located between the voltage probes. This
interpretation is reinforced by carrying out angular sweeps of ,
revealing an antisymmetric dependence on the helicity of the field sweep.Comment: Submitted to Phys. Rev.
Adsorption of Reactive Particles on a Random Catalytic Chain: An Exact Solution
We study equilibrium properties of a catalytically-activated annihilation reaction taking place on a one-dimensional chain of length () in which some segments (placed at random, with mean concentration
) possess special, catalytic properties. Annihilation reaction takes place,
as soon as any two particles land onto two vacant sites at the extremities
of the catalytic segment, or when any particle lands onto a vacant site on
a catalytic segment while the site at the other extremity of this segment is
already occupied by another particle. Non-catalytic segments are inert with
respect to reaction and here two adsorbed particles harmlessly coexist. For
both "annealed" and "quenched" disorder in placement of the catalytic segments,
we calculate exactly the disorder-average pressure per site. Explicit
asymptotic formulae for the particle mean density and the compressibility are
also presented.Comment: AMSTeX, 27 pages + 4 figure
Development and validation of a WHOQOL-BREF Taiwanese audio player-assisted interview version for the elderly who use a spoken dialect
Reaction Front in an A+B -> C Reaction-Subdiffusion Process
We study the reaction front for the process A+B -> C in which the reagents
move subdiffusively. Our theoretical description is based on a fractional
reaction-subdiffusion equation in which both the motion and the reaction terms
are affected by the subdiffusive character of the process. We design numerical
simulations to check our theoretical results, describing the simulations in
some detail because the rules necessarily differ in important respects from
those used in diffusive processes. Comparisons between theory and simulations
are on the whole favorable, with the most difficult quantities to capture being
those that involve very small numbers of particles. In particular, we analyze
the total number of product particles, the width of the depletion zone, the
production profile of product and its width, as well as the reactant
concentrations at the center of the reaction zone, all as a function of time.
We also analyze the shape of the product profile as a function of time, in
particular its unusual behavior at the center of the reaction zone
- …
