1,899 research outputs found

    Sodium vacancy ordering and the co-existence of localized spins and itinerant charges in NaxCoO2

    Full text link
    The sodium cobaltate family (NaxCoO2) is unique among transition metal oxides because the Co sits on a triangular lattice and its valence can be tuned over a wide range by varying the Na concentration x. Up to now detailed modeling of the rich phenomenology (which ranges from unconventional superconductivity to enhanced thermopower) has been hampered by the difficulty of controlling pure phases. We discovered that certain Na concentrations are specially stable and are associated with superlattice ordering of the Na clusters. This leads naturally to a picture of co-existence of localized spins and itinerant charge carriers. For x = 0.84 we found a remarkably small Fermi energy of 87 K. Our picture brings coherence to a variety of measurements ranging from NMR to optical to thermal transport. Our results also allow us to take the first step towards modeling the mysterious ``Curie-Weiss'' metal state at x = 0.71. We suggest the local moments may form a quantum spin liquid state and we propose experimental test of our hypothesis.Comment: 16 pages, 5 figure

    Fundamentals of microcrack nucleation mechanics

    Get PDF
    A foundation for ultrasonic evaluation of microcrack nucleation mechanics is identified in order to establish a basis for correlations between plane strain fracture toughness and ultrasonic factors through the interaction of elastic waves with material microstructures. Since microcracking is the origin of (brittle) fracture, it is appropriate to consider the role of stress waves in the dynamics of microcracking. Therefore, the following topics are discussed: (1) microstress distributions with typical microstructural defects located in the stress field; (2) elastic wave scattering from various idealized defects; and (3) dynamic effective-properties of media with randomly distributed inhomogeneities

    The first products made in space: Monodisperse latex particles

    Get PDF
    The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles

    Magnetothermopower and Magnetoresistivity of RuSr2Gd1-xLaxCu2O8 (x=0, 0.1)

    Full text link
    We report measurements of magnetothermopower and magnetoresistivity as a function of temperature on RuSr2Gd1-xLaxCu2O8 (x = 0, 0.1). The normal-state thermopower shows a dramatic decrease after applying a magnetic field of 5 T, whereas the resistivity shows only a small change after applying the same field. Our results suggest that RuO2 layers are conducting and the magnetic field induced decrease of the overall thermopower is caused by the decrease of partial thermopower decrease associated with the spin entropy decrease of the carriers in the RuO2 layers.Comment: 21 pages, 6 figure

    An Empirical Charge Transfer Potential with Correct Dissociation Limits

    Full text link
    The empirical valence bond (EVB) method [J. Chem. Phys. 52, 1262 (1970)] has always embodied charge transfer processes. The mechanism of that behavior is examined here and recast for use as a new empirical potential energy surface for large-scale simulations. A two-state model is explored. The main features of the model are: (1) Explicit decomposition of the total system electron density is invoked; (2) The charge is defined through the density decomposition into constituent contributions; (3) The charge transfer behavior is controlled through the resonance energy matrix elements which cannot be ignored; and (4) A reference-state approach, similar in spirit to the EVB method, is used to define the resonance state energy contributions in terms of "knowable" quantities. With equal validity, the new potential energy can be expressed as a nonthermal ensemble average with a nonlinear but analytical charge dependence in the occupation number. Dissociation to neutral species for a gas-phase process is preserved. A variant of constrained search density functional theory is advocated as the preferred way to define an energy for a given charge.Comment: Submitted to J. Chem. Phys. 11/12/03. 14 pages, 8 figure

    Magnetoresistance Anomalies in (Ga,Mn)As Epilayers with Perpendicular Magnetic Anisotropy

    Full text link
    We report the observation of anomalies in the longitudinal magnetoresistance of tensile-strained (Ga,Mn)As epilayers with perpendicular magnetic anisotropy. Magnetoresistance measurements carried out in the planar geometry (magnetic field parallel to the current density) reveal "spikes" that are antisymmetric with respect to the direction of the magnetic field. These anomalies always occur during magnetization reversal, as indicated by a simultaneous change in sign of the anomalous Hall effect. The data suggest that the antisymmetric anomalies originate in anomalous Hall effect contributions to the longitudinal resistance when domain walls are located between the voltage probes. This interpretation is reinforced by carrying out angular sweeps of H\vec{H}, revealing an antisymmetric dependence on the helicity of the field sweep.Comment: Submitted to Phys. Rev.

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    Adsorption of Reactive Particles on a Random Catalytic Chain: An Exact Solution

    Full text link
    We study equilibrium properties of a catalytically-activated annihilation A+A0A + A \to 0 reaction taking place on a one-dimensional chain of length NN (NN \to \infty) in which some segments (placed at random, with mean concentration pp) possess special, catalytic properties. Annihilation reaction takes place, as soon as any two AA particles land onto two vacant sites at the extremities of the catalytic segment, or when any AA particle lands onto a vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by another AA particle. Non-catalytic segments are inert with respect to reaction and here two adsorbed AA particles harmlessly coexist. For both "annealed" and "quenched" disorder in placement of the catalytic segments, we calculate exactly the disorder-average pressure per site. Explicit asymptotic formulae for the particle mean density and the compressibility are also presented.Comment: AMSTeX, 27 pages + 4 figure

    Reaction Front in an A+B -> C Reaction-Subdiffusion Process

    Full text link
    We study the reaction front for the process A+B -> C in which the reagents move subdiffusively. Our theoretical description is based on a fractional reaction-subdiffusion equation in which both the motion and the reaction terms are affected by the subdiffusive character of the process. We design numerical simulations to check our theoretical results, describing the simulations in some detail because the rules necessarily differ in important respects from those used in diffusive processes. Comparisons between theory and simulations are on the whole favorable, with the most difficult quantities to capture being those that involve very small numbers of particles. In particular, we analyze the total number of product particles, the width of the depletion zone, the production profile of product and its width, as well as the reactant concentrations at the center of the reaction zone, all as a function of time. We also analyze the shape of the product profile as a function of time, in particular its unusual behavior at the center of the reaction zone
    corecore