13,982 research outputs found
Supercurrent transferring through c-axis cuprate Josephson junctions with thick normal-metal-bridge
With simple but exactly solvable model, we investigate the supercurrent
transferring through the c-axis cuprate superconductor-normal
metal-superconductor junctions with the clean normal metal much thicker than
its coherence length. It is shown that the supercurrent as a function of
thickness of the normal metal decreases much slower than the exponential
decaying expected by the proximity effect. The present result may account for
the giant proximity effect observed in the c-axis cuprate SNS junctions.Comment: 6 pages, 4 figure
Classification of multipartite entanglement containing infinitely many kinds of states
We give a further investigation of the range criterion and Low-to-High Rank
Generating Mode (LHRGM) introduced in \cite{Chen}, which can be used for the
classification of states under reversible local filtering
operations. By using of these techniques, we entirely classify the family of
states, which actually contains infinitely many kinds of
states. The classifications of true entanglement of
and systems are briefly listed respectively.Comment: 11 pages, revte
Shubnikov de Haas effect in the metallic state of NaCoO
Shubnikov de Haas oscillations for two well defined frequencies,
corresponding respectively to areas of 0.8 and 1.36% of the first Brillouin
zone (FBZ), were observed in single crystals of NaCoO. The
existence of Na superstructures in NaCoO, coupled with this
observation, suggests the possibility that the periods are due to the
reconstruction of the large Fermi surface around the point. An
alternative interpretation in terms of the long sought-after
pockets is also considered but found to be incompatible
with existing specific heat data.Comment: 5 pages 4 figure
The `bare' strange stars might not be bare
It is proposed that the `bare' strange matter stars might not be bare, and
radio pulsars might be in fact `bare' strange stars. As strange matter stars
being intensely magnetized rotate, the induced unipolar electric fields would
be large enough to construct magnetospheres. This situation is very similar to
that discussed by many authors for rotating neutron stars. Also, the strange
stars with accretion crusts in binaries could act as X-ray pulsars or X-ray
bursters. There are some advantages if radio pulsars are `bare' strange stars.Comment: 11 pages, 1 Postscript figures, LaTeX, Chin. Phys. Lett. 1998,
Vol.15, Nov.12, p.93
A Modeling Approach to Fiber Fracture in Melt Impregnation
© 2016, Springer Science+Business Media Dordrecht. The effect of process variables such as roving pulling speed, melt temperature and number of pins on the fiber fracture during the processing of thermoplastic based composites was investigated in this study. The melt impregnation was used in this process of continuous glass fiber reinforced thermoplastic composites. Previous investigators have suggested a variety of models for melt impregnation, while comparatively little effort has been spent on modeling the fiber fracture caused by the viscous resin. Herein, a mathematical model was developed for impregnation process to predict the fiber fracture rate and describe the experimental results with the Weibull intensity distribution function. The optimal parameters of this process were obtained by orthogonal experiment. The results suggest that the fiber fracture is caused by viscous shear stress on fiber bundle in melt impregnation mold when pulling the fiber bundle
Quasiparticle Scattering Interference in (K,Tl)FexSe2 Superconductors
We model the quasiparticle interference (QPI) pattern in the recently
discovered (K,Tl)Fe_xSe2 superconductors. We show in the superconducting state
that, due to the absence of hole pockets at the Brillouin zone center, the
quasiparticle scattering occurs around the momentum transfer q=(0,0) and (\pm
\pi, \pm \pi) between electron pockets located at the zone boundary. More
importantly, although both d_{x^2-y^2}-wave and s-wave pairing symmetry lead to
nodeless quasiparticle excitations, distinct QPI features are predicted between
both types of pairing symmetry. In the presence of a nonmagnetic impurity
scattering, the QPI exhibits strongest scattering with q=(\pm \pi, \pm \pi) for
the d_{x^2-y^2}-wave pairing symmetry; while the strongest scattering exhibits
a ring-like structure centered around both q=(0,0) and (\pm \pi, \pm \pi) for
the isotropic s-wave pairing symmetry. A unique QPI pattern has also been
predicted due to a local pair-potential-type impurity scattering. The
significant contrast in the QPI pattern between the d_{x^2-y^2}-wave and the
isotropic s-wave pairing symmetry can be used to probe the pairing symmetry
within the Fourier-transform STM technique.Comment: 4+ pages, 3 embedded eps figure
Can Electric Field Induced Energy Gaps In Metallic Carbon Nanotubes?
The low-energy electronic structure of metallic single-walled carbon nanotube
(SWNT) in an external electric field perpendicular to the tube axis is
investigated. Based on tight-binding approximation, a field-induced energy gap
is found in all (n, n) SWNTs, and the gap shows strong dependence on the
electric field and the size of the tubes. We numerically find a universal
scaling that the gap is a function of the electric field and the radius of
SWNTs, and the results are testified by the second-order perturbation theory in
weak field limit. Our calculation shows the field required to induce a 0.1
gap in metallic SWNTs can be easily reached under the current
experimental conditions. It indicates a kind of possibility to apply nanotubes
to electric signal-controlled nanoscale switching devices
Scaling and non-Abelian signature in fractional quantum Hall quasiparticle tunneling amplitude
We study the scaling behavior in the tunneling amplitude when quasiparticles
tunnel along a straight path between the two edges of a fractional quantum Hall
annulus. Such scaling behavior originates from the propagation and tunneling of
charged quasielectrons and quasiholes in an effective field analysis. In the
limit when the annulus deforms continuously into a quasi-one-dimensional ring,
we conjecture the exact functional form of the tunneling amplitude for several
cases, which reproduces the numerical results in finite systems exactly. The
results for Abelian quasiparticle tunneling is consistent with the scaling
anaysis; this allows for the extraction of the conformal dimensions of the
quasiparticles. We analyze the scaling behavior of both Abelian and non-Abelian
quasiparticles in the Read-Rezayi Z_k-parafermion states. Interestingly, the
non-Abelian quasiparticle tunneling amplitudes exhibit nontrivial k-dependent
corrections to the scaling exponent.Comment: 16 pages, 4 figure
- …
