4,368 research outputs found
Rates of solar angles for two-axis concentrators
The Sun's position by the azimuth and elevation angles and its rate of change at any time of day are determined to design 2 axis tracking mechanisms of solar concentrators. The Sun's angles and their rates for selected months of the year (March, June, September and December) and for seven selected atitudes (0, + or - 30, + or - 60, + or - 90) covering both the northern and southern hemispheres were studied. The development of the angle and angle rate analytical expressions for any month, hour of day, and latitude provides the solar concentrator designer with a quantitative determination of the limiting Sun's position and angle rates for an accurate automatic tracking mechanism
Introduction to Graphene Electronics -- A New Era of Digital Transistors and Devices
The speed of silicon-based transistors has reached an impasse in the recent
decade, primarily due to scaling techniques and the short-channel effect.
Conversely, graphene (a revolutionary new material possessing an atomic
thickness) has been shown to exhibit a promising value for electrical
conductivity. Graphene would thus appear to alleviate some of the drawbacks
associated with silicon-based transistors. It is for this reason why such a
material is considered one of the most prominent candidates to replace silicon
within nano-scale transistors. The major crux here, is that graphene is
intrinsically gapless, and yet, transistors require a band-gap pertaining to a
well-defined ON/OFF logical state. Therefore, exactly as to how one would
create this band-gap in graphene allotropes is an intensive area of growing
research. Existing methods include nano-ribbons, bilayer and multi-layer
structures, carbon nanotubes, as well as the usage of the graphene substrates.
Graphene transistors can generally be classified according to two working
principles. The first is that a single graphene layer, nanoribbon or carbon
nanotube can act as a transistor channel, with current being transported along
the horizontal axis. The second mechanism is regarded as tunneling, whether
this be band-to-band on a single graphene layer, or vertically between adjacent
graphene layers. The high-frequency graphene amplifier is another talking point
in recent research, since it does not require a clear ON/OFF state, as with
logical electronics. This paper reviews both the physical properties and
manufacturing methodologies of graphene, as well as graphene-based electronic
devices, transistors, and high-frequency amplifiers from past to present
studies. Finally, we provide possible perspectives with regards to future
developments.Comment: This is an updated version of our review article, due to be published
in Contemporary Physics (Sept 2013). Included are updated references, along
with a few minor corrections. (45 pages, 19 figures
Exact solution and interfacial tension of the six-vertex model with anti-periodic boundary conditions
We consider the six-vertex model with anti-periodic boundary conditions
across a finite strip. The row-to-row transfer matrix is diagonalised by the
`commuting transfer matrices' method. {}From the exact solution we obtain an
independent derivation of the interfacial tension of the six-vertex model in
the anti-ferroelectric phase. The nature of the corresponding integrable
boundary condition on the spin chain is also discussed.Comment: 18 pages, LaTeX with 1 PostScript figur
Temperley-Lieb Words as Valence-Bond Ground States
Based on the Temperley--Lieb algebra we define a class of one-dimensional
Hamiltonians with nearest and next-nearest neighbour interactions. Using the
regular representation we give ground states of this model as words of the
algebra. Two point correlation functions can be computed employing the
Temperley--Lieb relations. Choosing a spin-1/2 representation of the algebra we
obtain a generalization of the (q-deformed) Majumdar--Ghosh model. The ground
states become valence-bond states.Comment: 9 Pages, LaTeX (with included style files
Heavy ozone enrichments from ATMOS infrared solar spectra
Vertical enrichment profiles of stratospheric ^(16)O^(16)O^(18)O and ^(16)O^(18)O^(16)O (hereafter referred to as ^(668)O_3 and ^(686)O_3 respectively) have been derived from space-based solar occultation spectra recorded at 0.01 cm^(−1) resolution by the ATMOS (Atmospheric Trace MOlecule Spectroscopy) Fourier-transform infrared (FTIR) spectrometer. The observations, made during the Spacelab 3 and ATLAS-1, -2, and -3 shuttle missions, cover polar, mid-latitude and tropical regions between 26 to 2.6 mb inclusive (≈ 25 to 41 km). Average enrichments, weighted by molecular ^(48)O_3 density, of (15±6)% were found for ^(668)O_3 and (10±7)% for ^(686)O_3. Defining the mixing ratio of ^(50)O_3 as the sum of those for ^(668)O_3 and ^(686)O_3, an enrichment of (13±5)% was found for ^(50)O_3 (1σ standard deviation). No latitudinal or vertical gradients were found outside this standard deviation. From a series of ground-based measurements by the ATMOS instrument at Table Mountain, California (34.4°N), an average total column ^(668)O_3 enrichment of (17±4)% (1σ standard deviation) was determined, with no significant seasonal variation discernable. Possible biases in the spectral intensities that affect the determination of absolute enrichments are discussed
Generation of atom-light entanglement in an optical cavity for quantum enhanced atom interferometry
We theoretically investigate the generation of atom-light entanglement via Raman superradiance in an optical cavity, and show how this can be used to enhance the sensitivity of atom interferometry. We model a realistic optical cavity, and show that by careful temporal shaping of the optical local oscillator used to measure the light emitted from the cavity, information in the optical mode can be combined with the signal from the atom interferometer to reduce the quantum noise, and thus increase the sensitivity. It was found in Phys. Rev. Lett. 110, 053002 (2013) that an atomic “seed” was required in order to reduce spontaneous emission and allow for single mode behavior of the device. In this paper we find that the optical cavity reduces the need for an atomic seed, which allows for stronger atom-light correlations and a greater level of quantum enhancement
Incidence and drug treatment of emotional distress after cancer diagnosis : a matched primary care case-control study
Notes This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.Peer reviewedPublisher PD
Generating GHZ state in 2m-qubit spin network
We consider a pure 2m-qubit initial state to evolve under a particular
quantum me- chanical spin Hamiltonian, which can be written in terms of the
adjacency matrix of the Johnson network J(2m;m). Then, by using some techniques
such as spectral dis- tribution and stratification associated with the graphs,
employed in [1, 2], a maximally entangled GHZ state is generated between the
antipodes of the network. In fact, an explicit formula is given for the
suitable coupling strengths of the hamiltonian, so that a maximally entangled
state can be generated between antipodes of the network. By using some known
multipartite entanglement measures, the amount of the entanglement of the final
evolved state is calculated, and finally two examples of four qubit and six
qubit states are considered in details.Comment: 22 page
High glucose up-regulates ENaC and SGK1 expression in HCD-cells
Background/Aim: Diabetic nephropathy is associated with progressive renal damage, leading to impaired function and end-stage renal failure. Secondary hypertension stems from a deranged ability of cells within the kidney to resolve and appropriately regulate sodium resorption in response to hyperglycaemia. However, the mechanisms by which glucose alters sodium re-uptake have not been fully characterised.
Methods: Here we present RT-PCR, western blot and immunocytochemistry data confirming mRNA and protein expression of the serum and glucocorticoid inducible kinase (SGK1) and the a conducting subunit of the epithelial sodium channel (ENaC) in a model in vitro system of the human cortical collecting duct (HCD). We examined changes in expression of these elements in response to glucose challenge, designed to mimic hyperglycaemia associated with type 2 diabetes mellitus. Changes in Na+ concentration were assessed using single-cell microfluorimetry.
Results: Incubation with glucose, the Ca2+-ionophore ionomycin and the cytokine TGF-beta 1 were all found to evoke significant and time-dependent increases in both SGK1 and alpha ENaC protein expression. These molecular changes were correlated to an increase in Na+-uptake at the single-cell level.
Conclusion: Together these data offer a potential explanation for glucose-evoked Na+-resorption and a potential contributory role of SGK1 and ENaCs in development of secondary hypertension, commonly linked to diabetic nephropathy
- …
